IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp592-603.html
   My bibliography  Save this article

Technical and economic assessment of the pyrolysis and gasification integrated process for biomass conversion

Author

Listed:
  • Im-orb, Karittha
  • Wiyaratn, Wisitsree
  • Arpornwichanop, Amornchai

Abstract

The technical and economic prospects for synthesis gas production via an integrated biomass pyrolysis and gasification (IBPG) process are evaluated for the case where rice straw is a considered feedstock. Modeling of the integrated process is performed by using the Aspen Custom Modeler program. The simulation results show that the production rates of synthesis gas and bio-oil derived from an IBPG process increase as pyrolysis temperature increases, due to the increased volatiles. Compared to a conventional biomass gasification, IBPG provides additional bio-oil as a valued by-product, releases less waste heat and offers higher energy efficiency at the same synthesis gas production rate. The IBPG process with a pyrolysis temperature of 700 °C shows the best technical performance. However, pinch analysis indicates that the IBPG process with a pyrolysis temperature of 400 °C or 500 °C and conventional biomass gasification is technically feasible; the optimum heat integration structures are achieved. The economic analysis, which considers only the reaction-related equipment, indicates that the IBPG process with a pyrolysis temperature of 500 °C offers synthesis gas and bio-oil production rates of 1.185 and 0.2044 kmol h−1, respectively, and an energy efficiency of 68.86% is most economically feasible.

Suggested Citation

  • Im-orb, Karittha & Wiyaratn, Wisitsree & Arpornwichanop, Amornchai, 2018. "Technical and economic assessment of the pyrolysis and gasification integrated process for biomass conversion," Energy, Elsevier, vol. 153(C), pages 592-603.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:592-603
    DOI: 10.1016/j.energy.2018.04.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    2. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    3. Nam, Hyungseok & Capareda, Sergio C. & Ashwath, Nanjappa & Kongkasawan, Jinjuta, 2015. "Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors," Energy, Elsevier, vol. 93(P2), pages 2384-2394.
    4. Shahbaz, Muhammad & yusup, Suzana & Inayat, Abrar & Patrick, David Onoja & Ammar, Muhammad, 2017. "The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 468-476.
    5. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arroyave, Juan D. & Chejne, Farid & Mejía, Juan M. & Maya, Juan C., 2020. "Evaluation of CO2 production for enhanced oil recovery from four power plants," Energy, Elsevier, vol. 206(C).
    2. Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
    3. Im-orb, Karittha & Arpornwichanop, Amornchai, 2020. "Process and sustainability analyses of the integrated biomass pyrolysis, gasification, and methanol synthesis process for methanol production," Energy, Elsevier, vol. 193(C).
    4. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).
    5. Anderson Rocha Amaral & Lucas Pinto Bernar & Caio Campos Ferreira & Romero Moreira de Oliveira & Anderson Mathias Pereira & Lia Martins Pereira & Marcelo Costa Santos & Fernanda Paula da Costa Assunçã, 2022. "Economic Feasibility Assessment of the Thermal Catalytic Process of Wastes: Açaí Seeds ( Euterpe oleracea ) and Scum from Grease Traps," Energies, MDPI, vol. 15(20), pages 1-23, October.
    6. Ayub, Yousaf & Zhou, Jianzhao & Shen, Weifeng & Ren, Jingzheng, 2023. "Innovative valorization of biomass waste through integration of pyrolysis and gasification: Process design, optimization, and multi-scenario sustainability analysis," Energy, Elsevier, vol. 282(C).
    7. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    8. Badoei-dalfard, Arastoo & Malekabadi, Saeid & Karami, Zahra & Sargazi, Ghasem, 2019. "Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil," Renewable Energy, Elsevier, vol. 141(C), pages 874-882.
    9. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Im-orb, Karittha & Arpornwichanop, Amornchai, 2020. "Process and sustainability analyses of the integrated biomass pyrolysis, gasification, and methanol synthesis process for methanol production," Energy, Elsevier, vol. 193(C).
    2. Shi, Tao & Zhou, Jianzhao & Ren, Jingzheng & Ayub, Yousaf & Yu, Haoshui & Shen, Weifeng & Li, Qiao & Yang, Ao, 2023. "Co-valorisation of sewage sludge and poultry litter waste for hydrogen production: Gasification process design, sustainability-oriented optimization, and systematic assessment," Energy, Elsevier, vol. 272(C).
    3. Im-orb, Karittha & Arpornwichanop, Amornchai, 2016. "Techno-environmental analysis of the biomass gasification and Fischer-Tropsch integrated process for the co-production of bio-fuel and power," Energy, Elsevier, vol. 112(C), pages 121-132.
    4. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    5. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    6. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    7. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    8. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    9. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    10. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    11. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    12. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    13. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    14. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    15. Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
    16. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    17. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    18. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Marta Pacheco & Filomena Pinto & Anders Brunsvik & Rui André & Paula Marques & Ricardo Mata & Joana Ortigueira & Francisco Gírio & Patrícia Moura, 2023. "Effects of Lignin Gasification Impurities on the Growth and Product Distribution of Butyribacterium methylotrophicum during Syngas Fermentation," Energies, MDPI, vol. 16(4), pages 1-17, February.
    20. Isaksson, Johan & Pettersson, Karin & Mahmoudkhani, Maryam & Åsblad, Anders & Berntsson, Thore, 2012. "Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill – Consequences for mass and energy balances and global CO2 emissions," Energy, Elsevier, vol. 44(1), pages 420-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:592-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.