IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000719.html
   My bibliography  Save this article

Optimization of exterior wall insulation in office buildings based on wall orientation: Economic, energy and carbon saving potential in China

Author

Listed:
  • Zheng, Zhihang
  • Xiao, Jian
  • Yang, Ying
  • Xu, Feng
  • Zhou, Jin
  • Liu, Hongcheng

Abstract

The aim of this study is to optimize the exterior wall insulation of different orientations to further reduce the heating and cooling energy consumption of office buildings, and to analyze its economic, energy and carbon saving potential in China. A six-story office building was selected as the case building and its energy consumption was evaluated using TRNSYS, considering variations in latitude, window-to-wall ratio, aspect ratio, and exterior wall U-values of four orientations. In addition, the exterior wall insulation in four directions was optimized by coupling artificial neural network and genetic algorithm. The main results showed that in the 20°N to 40°N region of China, the GA-optimized exterior wall U-values were highest in the southern direction, followed by the eastern and western directions, and finally the northern direction. In addition, overall, the optimal combination of exterior wall U-values showed a trend of high at low latitudes and low at high latitudes, and increased with increasing WWR and decreased with increasing AR. Finally, compared to the exterior wall requirements for energy efficient buildings in GB 55015-2021, the optimized office buildings at low altitude in China showed a 3.26 %, 6.77 % and 6.59 % reduction in ALCC, total energy consumption and total carbon emissions respectively.

Suggested Citation

  • Zheng, Zhihang & Xiao, Jian & Yang, Ying & Xu, Feng & Zhou, Jin & Liu, Hongcheng, 2024. "Optimization of exterior wall insulation in office buildings based on wall orientation: Economic, energy and carbon saving potential in China," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000719
    DOI: 10.1016/j.energy.2024.130300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie, Pengfei & Yan, Fuchun & Li, Jing & Zhang, Yumei & Wen, Zhimei, 2019. "Optimizing the insulation thickness of walls of existing buildings with CHP-based district heating systems," Energy, Elsevier, vol. 189(C).
    2. Lee, Junghun & Kim, Seohoon & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Thermal performance evaluation of low-income buildings based on indoor temperature performance," Applied Energy, Elsevier, vol. 221(C), pages 425-436.
    3. Yu, Fei & Huang, Gongyi & Xu, Chuanzhong, 2020. "An explicit method to extract fitting parameters in lumped-parameter equivalent circuit model of industrial solar cells," Renewable Energy, Elsevier, vol. 146(C), pages 2188-2198.
    4. Muthalagappan Narayanan & Aline Ferreira de Lima & André Felipe Oliveira de Azevedo Dantas & Walter Commerell, 2020. "Development of a Coupled TRNSYS-MATLAB Simulation Framework for Model Predictive Control of Integrated Electrical and Thermal Residential Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-29, November.
    5. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    6. Rönnelid, Mats, 2000. "The origin of the asymmetric annual irradiation distribution at high latitudes," Renewable Energy, Elsevier, vol. 19(3), pages 345-358.
    7. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
    8. Zhuang, Chaoqun & Gao, Yafeng & Zhao, Yingru & Levinson, Ronnen & Heiselberg, Per & Wang, Zhiqiang & Guo, Rui, 2021. "Potential benefits and optimization of cool-coated office buildings: A case study in Chongqing, China," Energy, Elsevier, vol. 226(C).
    9. Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
    10. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    11. Jie, Pengfei & Zhang, Fenghe & Fang, Zhou & Wang, Hongbo & Zhao, Yunfeng, 2018. "Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions," Energy, Elsevier, vol. 159(C), pages 1132-1147.
    12. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    13. Axaopoulos, Ioannis & Axaopoulos, Petros & Panayiotou, Gregoris & Kalogirou, Soteris & Gelegenis, John, 2015. "Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics," Energy, Elsevier, vol. 90(P1), pages 939-952.
    14. Shilei Lu & Xiaolei Tang & Liran Ji & Daixin Tu, 2017. "Research on Energy-Saving Optimization for the Performance Parameters of Rural-Building Shape and Envelope by TRNSYS-GenOpt in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 9(2), pages 1-18, February.
    15. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojun Liu & Xin Chen & Mehdi Shahrestani, 2020. "Optimization of Insulation Thickness of External Walls of Residential Buildings in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    2. Jie, Pengfei & Yan, Fuchun & Li, Jing & Zhang, Yumei & Wen, Zhimei, 2019. "Optimizing the insulation thickness of walls of existing buildings with CHP-based district heating systems," Energy, Elsevier, vol. 189(C).
    3. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    4. Hong, Taehoon & Kim, Jimin & Lee, Minhyun, 2019. "A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance," Energy, Elsevier, vol. 174(C), pages 823-834.
    5. Frida Bazzocchi & Cecilia Ciacci & Vincenzo Di Naso, 2021. "Evaluation of Environmental and Economic Sustainability for the Building Envelope of Low-Carbon Schools," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    6. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    7. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.
    8. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    9. João Tabanêz Patrício & Rui Amaral Lopes & Naim Majdalani & Daniel Aelenei & João Martins, 2023. "Aggregated Use of Energy Flexibility in Office Buildings," Energies, MDPI, vol. 16(2), pages 1-17, January.
    10. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    11. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    12. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    13. Ji-Hyun Shin & Hyo-Jun Kim & Han-Gyeol Lee & Young-Hum Cho, 2023. "Variable Water Flow Control of Hybrid Geothermal Heat Pump System," Energies, MDPI, vol. 16(17), pages 1-18, August.
    14. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    15. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    16. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    17. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    18. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    19. Seo-Hoon Kim & Jung-Hun Lee & Jong-Hun Kim & Seung-Hwan Yoo & Hak-Geun Jeong, 2018. "The Feasibility of Improving the Accuracy of In Situ Measurements in the Air-Surface Temperature Ratio Method," Energies, MDPI, vol. 11(7), pages 1-18, July.
    20. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.