Design and experimental validation of a computational effective dynamic thermal energy storage tank model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.11.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rodríguez, I. & Pérez-Segarra, C.D. & Lehmkuhl, O. & Oliva, A., 2013. "Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants," Applied Energy, Elsevier, vol. 109(C), pages 402-414.
- Manenti, Flavio & Ravaghi-Ardebili, Zohreh, 2013. "Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage," Energy, Elsevier, vol. 55(C), pages 89-97.
- Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
- Zaversky, Fritz & Pérez de Zabalza Asiain, Javier & Sánchez, Marcelino, 2017. "Transient response simulation of a passive sensible heat storage system and the comparison to a conventional active indirect two-tank unit," Energy, Elsevier, vol. 139(C), pages 782-797.
- Rogelio Peón Menéndez & Juan Á. Martínez & Miguel J. Prieto & Lourdes Á. Barcia & Juan M. Martín Sánchez, 2014. "A Novel Modeling of Molten-Salt Heat Storage Systems in Thermal Solar Power Plants," Energies, MDPI, vol. 7(10), pages 1-20, October.
- Cocco, Daniele & Serra, Fabio, 2015. "Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants," Energy, Elsevier, vol. 81(C), pages 526-536.
- De Luca, Fabrizio & Ferraro, Vittorio & Marinelli, Valerio, 2015. "On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salts," Energy, Elsevier, vol. 83(C), pages 230-239.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Siddiqui, O. & Dincer, I., 2019. "Development and evaluation of a new hybrid ammonia fuel cell system with solar energy," Energy, Elsevier, vol. 189(C).
- Tagle-Salazar, Pablo D. & Prieto, Cristina & López-Román, Anton & Cabeza, Luisa F., 2023. "A transient heat losses model for two-tank storage systems with molten salts," Renewable Energy, Elsevier, vol. 219(P1).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
- Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
- Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
- Siddiqui, O. & Dincer, I., 2019. "Development and evaluation of a new hybrid ammonia fuel cell system with solar energy," Energy, Elsevier, vol. 189(C).
- Reyes, A. & Pailahueque, N. & Henríquez-Vargas, L. & Vásquez, J. & Sepúlveda, F., 2019. "Analysis of a multistage solar thermal energy accumulator," Renewable Energy, Elsevier, vol. 136(C), pages 621-631.
- Salazar, Germán A. & Fraidenraich, Naum & de Oliveira, Carlos Antonio Alves & de Castro Vilela, Olga & Hongn, Marcos & Gordon, Jeffrey M., 2017. "Analytic modeling of parabolic trough solar thermal power plants," Energy, Elsevier, vol. 138(C), pages 1148-1156.
- Li, Gen & Du, Guanghan & Liu, Guixiu & Yan, Junjie, 2024. "Study on the dynamic characteristics, control strategies and load variation rates of the concentrated solar power plant," Applied Energy, Elsevier, vol. 357(C).
- Garbrecht, Oliver & Bieber, Malte & Kneer, Reinhold, 2017. "Increasing fossil power plant flexibility by integrating molten-salt thermal storage," Energy, Elsevier, vol. 118(C), pages 876-883.
- Tagle-Salazar, Pablo D. & Prieto, Cristina & López-Román, Anton & Cabeza, Luisa F., 2023. "A transient heat losses model for two-tank storage systems with molten salts," Renewable Energy, Elsevier, vol. 219(P1).
- Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
- Lappalainen, Jari & Hakkarainen, Elina & Sihvonen, Teemu & Rodríguez-García, Margarita M. & Alopaeus, Ville, 2019. "Modelling a molten salt thermal energy system – A validation study," Applied Energy, Elsevier, vol. 233, pages 126-145.
- Xiaoming Zhang & Yuting Wu & Chongfang Ma & Qiang Meng & Xiao Hu & Cenyu Yang, 2019. "Experimental Study on Temperature Distribution and Heat Losses of a Molten Salt Heat Storage Tank," Energies, MDPI, vol. 12(10), pages 1-14, May.
- Yao, Lingxiang & Xiao, Xianyong & Wang, Yang & Yao, Xiaoming & Ma, Zhicheng, 2022. "Dynamic modeling and hierarchical control of a concentrated solar power plant with direct molten salt storage," Energy, Elsevier, vol. 252(C).
- Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
- Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
- Zhengyue Zhu & Ruihao Bian & Yajun Deng & Bo Yu & Dongliang Sun, 2023. "Multi-Objective Optimization of Graded Thermal Storage System for Direct Steam Generation with Dish Concentrators," Energies, MDPI, vol. 16(5), pages 1-21, March.
- Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
- Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
- Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
- Zaversky, Fritz & Sánchez, Marcelino & Astrain, David, 2014. "Object-oriented modeling for the transient response simulation of multi-pass shell-and-tube heat exchangers as applied in active indirect thermal energy storage systems for concentrated solar power," Energy, Elsevier, vol. 65(C), pages 647-664.
More about this item
Keywords
Thermal energy storage; Sensible heat; Dynamic modeling; Transient simulation; Molten salt; Modelica;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:840-857. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.