Transient response simulation of a passive sensible heat storage system and the comparison to a conventional active indirect two-tank unit
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.07.156
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zaversky, Fritz & Sánchez, Marcelino & Astrain, David, 2014. "Object-oriented modeling for the transient response simulation of multi-pass shell-and-tube heat exchangers as applied in active indirect thermal energy storage systems for concentrated solar power," Energy, Elsevier, vol. 65(C), pages 647-664.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
- Bonilla, Javier & Rodríguez-García, Margarita M. & Roca, Lidia & de la Calle, Alberto & Valenzuela, Loreto, 2018. "Design and experimental validation of a computational effective dynamic thermal energy storage tank model," Energy, Elsevier, vol. 152(C), pages 840-857.
- Reyes, A. & Pailahueque, N. & Henríquez-Vargas, L. & Vásquez, J. & Sepúlveda, F., 2019. "Analysis of a multistage solar thermal energy accumulator," Renewable Energy, Elsevier, vol. 136(C), pages 621-631.
- Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
- Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
- Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
- Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2016. "Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup," Applied Energy, Elsevier, vol. 178(C), pages 394-403.
- Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
- Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Chong, Daotong & Yan, Junjie, 2020. "Entropy generation distribution characteristics of a supercritical boiler superheater during transient processes," Energy, Elsevier, vol. 201(C).
- Guo, Xiaofeng & Fan, Yilin & Luo, Lingai, 2014. "Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction," Energy, Elsevier, vol. 69(C), pages 728-741.
- Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
- Wang, Chaoyang & Liu, Ming & Li, Bingxin & Liu, Yiwen & Yan, Junjie, 2017. "Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit," Energy, Elsevier, vol. 122(C), pages 505-527.
- Ramadan, M. & Khaled, M. & El Hage, H. & Harambat, F. & Peerhossaini, H., 2016. "Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction," Applied Energy, Elsevier, vol. 173(C), pages 481-493.
- González-Gómez, P.A. & Petrakopoulou, F. & Briongos, J.V. & Santana, D., 2017. "Cost-based design optimization of the heat exchangers in a parabolic trough power plant," Energy, Elsevier, vol. 123(C), pages 314-325.
- Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2021. "Thermodynamic optimization of the superheater during switching the load transient processes," Energy, Elsevier, vol. 218(C).
- Xiaolei Li & Zhifeng Wang & Ershu Xu & Linrui Ma & Li Xu & Dongming Zhao, 2019. "Dynamically Coupled Operation of Two-Tank Indirect TES and Steam Generation System," Energies, MDPI, vol. 12(9), pages 1-42, May.
- Zhang, Qiang & Cao, Donghong & Jiang, Kaijun & Du, Xiaoze & Xu, Ershu, 2020. "Heat transport characteristics of a peak shaving solar power tower station," Renewable Energy, Elsevier, vol. 156(C), pages 493-508.
- Zhang, Qiang & Wang, Zhiming & Du, Xiaoze & Yu, Gang & Wu, Hongwei, 2019. "Dynamic simulation of steam generation system in solar tower power plant," Renewable Energy, Elsevier, vol. 135(C), pages 866-876.
- Wang, Jiaxing & Li, Yiguo & Zhang, Junli, 2023. "Coordinated control of concentrated solar power systems with indirect molten salt storage considering operation mode switching: Using switching model predictive control," Energy, Elsevier, vol. 268(C).
- Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
More about this item
Keywords
Concentrated solar power (CSP); Thermal energy storage (TES); Transient response;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:782-797. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.