IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1187-1203.html
   My bibliography  Save this article

A thermal model to predict the dynamic performances of parabolic trough lines

Author

Listed:
  • Fasquelle, T.
  • Falcoz, Q.
  • Neveu, P.
  • Lecat, F.
  • Flamant, G.

Abstract

This work aims to predict the general performances of a pilot parabolic trough collector during transient periods. To do so, a one-dimensional thermal model has been developed. It has been validated with experimental results from two different experimental setups, in steady-state conditions, with a transmitted power maximum error of 3.4%. Since the model only predicts the collector's thermal behavior, the parabolic trough collector has been first optically qualified. Then, optical efficiencies were used as input for the model. Experimental results were obtained in steady-state conditions and compared to the model. Then, experimental and numerical results were compared during two period of time with varying inlet conditions (i.e. dynamic condition tests): the first one with stable conditions, and the other one with harsh conditions. The developed model showed a good capability of predicting the thermal behavior of the parabolic trough collector with unstable environment (DNI, mass flow, inlet temperature), with a 9.6% relative standard error in the worst case. As a conclusion, while previous studies only focused on steady-state conditions, it has been showed that this kind of model can be used to precisely predict the dynamic behavior of large power plants.

Suggested Citation

  • Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1187-1203
    DOI: 10.1016/j.energy.2017.09.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217315840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manenti, Flavio & Ravaghi-Ardebili, Zohreh, 2013. "Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage," Energy, Elsevier, vol. 55(C), pages 89-97.
    2. Valenzuela, Loreto & López-Martín, Rafael & Zarza, Eduardo, 2014. "Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments: A test method and a case study," Energy, Elsevier, vol. 70(C), pages 456-464.
    3. Zarza, Eduardo & Valenzuela, Loreto & León, Javier & Hennecke, Klaus & Eck, Markus & Weyers, H.-Dieter & Eickhoff, Martin, 2004. "Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project," Energy, Elsevier, vol. 29(5), pages 635-644.
    4. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    5. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    6. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    7. Serrano-Aguilera, J.J. & Valenzuela, L. & Parras, L., 2014. "Thermal 3D model for Direct Solar Steam Generation under superheated conditions," Applied Energy, Elsevier, vol. 132(C), pages 370-382.
    8. Biencinto, Mario & González, Lourdes & Valenzuela, Loreto, 2016. "A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS," Applied Energy, Elsevier, vol. 161(C), pages 133-142.
    9. Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
    10. Song, Xingwang & Dong, Guobo & Gao, Fangyuan & Diao, Xungang & Zheng, Liqing & Zhou, Fuyun, 2014. "A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts," Energy, Elsevier, vol. 77(C), pages 771-782.
    11. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopes, Francis M. & Conceição, Ricardo & Silva, Hugo G. & Salgado, Rui & Collares-Pereira, Manuel, 2021. "Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants," Renewable Energy, Elsevier, vol. 163(C), pages 755-771.
    2. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    3. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    4. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    5. Zaaoumi, Anass & Asbik, Mohamed & Hafs, Hajar & Bah, Abdellah & Alaoui, Mohammed, 2021. "Thermal performance simulation analysis of solar field for parabolic trough collectors assigned for ambient conditions in Morocco," Renewable Energy, Elsevier, vol. 163(C), pages 1479-1494.
    6. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    7. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    8. Liang, Hongbo & Fan, Man & You, Shijun & Xia, Junbao & Zhang, Huan & Wang, Yaran, 2018. "An analysis of the heat loss and overheating protection of a cavity receiver with a novel movable cover for parabolic trough solar collectors," Energy, Elsevier, vol. 158(C), pages 719-729.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    2. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    3. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
    5. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
    6. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    7. Li, Zeng-Yao & Huang, Zhen & Tao, Wen-Quan, 2016. "Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube," Energy, Elsevier, vol. 113(C), pages 1288-1303.
    8. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    9. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    10. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
    12. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    13. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    14. Chaanaoui, Meriem & Vaudreuil, Sébastien & Eddouibi, Jaouad & Ladouy, Sara & Abderafi, Souad & Bounahmidi, Tijani, 2024. "A detailed 1D model of a parabolic trough solar receiver with a double-validation approach," Energy, Elsevier, vol. 294(C).
    15. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    16. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    17. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Yin, Baoquan & Wu, Xiaoting, 2018. "Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China," Applied Energy, Elsevier, vol. 221(C), pages 100-111.
    18. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    19. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    20. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1187-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.