Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2012.11.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system," Applied Energy, Elsevier, vol. 92(C), pages 65-75.
- Yang, Zhen & Garimella, Suresh V., 2010. "Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions," Applied Energy, Elsevier, vol. 87(11), pages 3322-3329, November.
- Ghaddar, N. K. & Al-Marafie, A. M. & Al-Kandari, A., 1989. "Numerical simulation of stratification behaviour in thermal storage tanks," Applied Energy, Elsevier, vol. 32(3), pages 225-239.
- Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
- Flueckiger, Scott & Yang, Zhen & Garimella, Suresh V., 2011. "An integrated thermal and mechanical investigation of molten-salt thermocline energy storage," Applied Energy, Elsevier, vol. 88(6), pages 2098-2105, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaoming Zhang & Yuting Wu & Chongfang Ma & Qiang Meng & Xiao Hu & Cenyu Yang, 2019. "Experimental Study on Temperature Distribution and Heat Losses of a Molten Salt Heat Storage Tank," Energies, MDPI, vol. 12(10), pages 1-14, May.
- González, Ignacio & Pérez-Segarra, Carlos David & Lehmkuhl, Oriol & Torras, Santiago & Oliva, Assensi, 2016. "Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks," Applied Energy, Elsevier, vol. 179(C), pages 1106-1122.
- Tagle-Salazar, Pablo D. & Prieto, Cristina & López-Román, Anton & Cabeza, Luisa F., 2023. "A transient heat losses model for two-tank storage systems with molten salts," Renewable Energy, Elsevier, vol. 219(P1).
- Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
- Bonilla, Javier & Rodríguez-García, Margarita M. & Roca, Lidia & de la Calle, Alberto & Valenzuela, Loreto, 2018. "Design and experimental validation of a computational effective dynamic thermal energy storage tank model," Energy, Elsevier, vol. 152(C), pages 840-857.
- Lappalainen, Jari & Hakkarainen, Elina & Sihvonen, Teemu & Rodríguez-García, Margarita M. & Alopaeus, Ville, 2019. "Modelling a molten salt thermal energy system – A validation study," Applied Energy, Elsevier, vol. 233, pages 126-145.
- Cristina Prieto & Adrian Blindu & Luisa F. Cabeza & Juan Valverde & Guillermo García, 2023. "Molten Salts Tanks Thermal Energy Storage: Aspects to Consider during Design," Energies, MDPI, vol. 17(1), pages 1-19, December.
- Suárez, Christian & Iranzo, Alfredo & Pino, F.J. & Guerra, J., 2015. "Transient analysis of the cooling process of molten salt thermal storage tanks due to standby heat loss," Applied Energy, Elsevier, vol. 142(C), pages 56-65.
- Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
- Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Suárez, Christian & Iranzo, Alfredo & Pino, F.J. & Guerra, J., 2015. "Transient analysis of the cooling process of molten salt thermal storage tanks due to standby heat loss," Applied Energy, Elsevier, vol. 142(C), pages 56-65.
- Gang Wang & Tong Wang, 2022. "Effect Evaluation of Filling Medium Parameters on Operating and Mechanical Performances of Liquid Heavy Metal Heat Storage Tank," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
- Yi, Yuan & Nakayama, Akira, 2024. "A three-energy equation model and estimation of effective thermal properties for transient analysis of bi-disperse packed bed thermocline storage system," Renewable Energy, Elsevier, vol. 222(C).
- Chang, Zheshao & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng & Zhang, Qiangqiang & Liao, Zhirong & Li, Qing, 2016. "The effect of the physical boundary conditions on the thermal performance of molten salt thermocline tank," Renewable Energy, Elsevier, vol. 96(PA), pages 190-202.
- Flueckiger, Scott M. & Iverson, Brian D. & Garimella, Suresh V. & Pacheco, James E., 2014. "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Elsevier, vol. 113(C), pages 86-96.
- Wang, Letian & Yang, Zhen & Duan, Yuanyuan, 2015. "Influence of flow distribution on the thermal performance of dual-media thermocline energy storage systems," Applied Energy, Elsevier, vol. 142(C), pages 283-292.
- Flueckiger, Scott M. & Garimella, Suresh V., 2014. "Latent heat augmentation of thermocline energy storage for concentrating solar power – A system-level assessment," Applied Energy, Elsevier, vol. 116(C), pages 278-287.
- Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Parametric study and standby behavior of a packed-bed molten salt thermocline thermal storage system," Renewable Energy, Elsevier, vol. 48(C), pages 1-9.
- Yang, Zhen & Garimella, Suresh V., 2013. "Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants," Applied Energy, Elsevier, vol. 103(C), pages 256-265.
- Wu, Ming & Li, Mingjia & Xu, Chao & He, Yaling & Tao, Wenquan, 2014. "The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium," Applied Energy, Elsevier, vol. 113(C), pages 1363-1371.
- González, Ignacio & Pérez-Segarra, Carlos David & Lehmkuhl, Oriol & Torras, Santiago & Oliva, Assensi, 2016. "Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks," Applied Energy, Elsevier, vol. 179(C), pages 1106-1122.
- Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
- Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
- Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
- Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
- Filali Baba, Yousra & Al Mers, Ahmed & Ajdad, Hamid, 2020. "Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization," Renewable Energy, Elsevier, vol. 153(C), pages 440-455.
- Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system," Applied Energy, Elsevier, vol. 92(C), pages 65-75.
- Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
- Qin, Frank G.F. & Yang, Xiaoping & Ding, Zhan & Zuo, Yuanzhi & Shao, Youyan & Jiang, Runhua & Yang, Xiaoxi, 2012. "Thermocline stability criterions in single-tanks of molten salt thermal energy storage," Applied Energy, Elsevier, vol. 97(C), pages 816-821.
- Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
More about this item
Keywords
CFD&HT; Molten salt tanks; Numerical modelling; Multi-physics model; TES;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:109:y:2013:i:c:p:402-414. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.