IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp396-409.html
   My bibliography  Save this article

Optimal combined heat-and-power plant for a low-temperature geothermal source

Author

Listed:
  • Van Erdeweghe, Sarah
  • Van Bael, Johan
  • Laenen, Ben
  • D'haeseleer, William

Abstract

This work compares the performance of four combined heat-and-power (CHP) configurations for application in a binary geothermal plant connected to a low-temperature 65/40 and a high-temperature 90/60 district heating system. The investigated configurations are the series, the parallel, the preheat-parallel and the HB4 configurations. The geothermal source conditions have been defined based on existing geothermal plants in the northwest of Europe. Production temperatures in the range of 110–150 °C and mass flow rates in the range of 100–200 kg/s are considered. The goal is to identify the best-performing CHP configuration for every set of geothermal source conditions (temperature and flow rate) and for multiple values of the heat demand. The electrical power output is used as the optimization objective and the different CHP plants are compared based on the exergetic plant efficiency. The optimal CHP plant has always a higher exergetic plant efficiency than the pure electrical power plant; up to 22.8%-pts higher for the connection to a 65/40 DH system and up to 20.9%-pts higher for the connection to a 90/60 DH system. The highest increase of the exergetic plant efficiency over the pure electrical power plant is obtained for low values of the geothermal source temperature and flow rate.

Suggested Citation

  • Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D'haeseleer, William, 2018. "Optimal combined heat-and-power plant for a low-temperature geothermal source," Energy, Elsevier, vol. 150(C), pages 396-409.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:396-409
    DOI: 10.1016/j.energy.2018.01.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D'haeseleer, William, 2017. "Comparison of series/parallel configuration for a low-T geothermal CHP plant, coupled to thermal networks," Renewable Energy, Elsevier, vol. 111(C), pages 494-505.
    2. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    3. Habka, Muhsen & Ajib, Salman, 2014. "Investigation of novel, hybrid, geothermal-energized cogeneration plants based on organic Rankine cycle," Energy, Elsevier, vol. 70(C), pages 212-222.
    4. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    5. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Yang, Youngmin, 2016. "Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications," Energy, Elsevier, vol. 102(C), pages 473-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    2. Nazari, Ali & Soltani, M. & Hosseinpour, Morteza & Alharbi, Walied & Raahemifar, Kaamran, 2021. "Integrated anaerobic co-digestion of municipal organic waste to biogas using geothermal and CHP plants: A comprehensive analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Fabien Marty & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2019. "Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant," Energies, MDPI, vol. 12(6), pages 1-22, March.
    4. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Li, Kun & Ding, Yi-Zhe & Ai, Chen & Sun, Hongwei & Xu, Yi-Peng & Nedaei, Navid, 2022. "Multi-objective optimization and multi-aspect analysis of an innovative geothermal-based multi-generation energy system for power, cooling, hydrogen, and freshwater production," Energy, Elsevier, vol. 245(C).
    6. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.
    7. Tim Eller & Florian Heberle & Dieter Brüggemann, 2019. "Transient Simulation of Geothermal Combined Heat and Power Generation for a Resilient Energetic and Economic Evaluation," Energies, MDPI, vol. 12(5), pages 1-16, March.
    8. Leveni, Martina & Manfrida, Giampaolo & Cozzolino, Raffaello & Mendecka, Barbara, 2019. "Energy and exergy analysis of cold and power production from the geothermal reservoir of Torre Alfina," Energy, Elsevier, vol. 180(C), pages 807-818.
    9. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    10. Eyerer, Sebastian & Dawo, Fabian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Advanced ORC architecture for geothermal combined heat and power generation," Energy, Elsevier, vol. 205(C).
    11. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D'haeseleer, William, 2019. "Optimal configuration for a low-temperature geothermal CHP plant based on thermoeconomic optimization," Energy, Elsevier, vol. 179(C), pages 323-335.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    2. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.
    3. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D’haeseleer, William, 2019. "Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles," Applied Energy, Elsevier, vol. 242(C), pages 716-731.
    4. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D'haeseleer, William, 2019. "Optimal configuration for a low-temperature geothermal CHP plant based on thermoeconomic optimization," Energy, Elsevier, vol. 179(C), pages 323-335.
    5. Eyerer, Sebastian & Dawo, Fabian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Advanced ORC architecture for geothermal combined heat and power generation," Energy, Elsevier, vol. 205(C).
    6. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    7. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    8. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    9. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    10. Javier Uche & Amaya Martínez-Gracia & Ignacio Zabalza & Sergio Usón, 2024. "Renewable Energy Source (RES)-Based Polygeneration Systems for Multi-Family Houses," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    11. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    12. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    13. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    14. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    15. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    16. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    18. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    19. Sorn, Kimsan & Deethayat, Thoranis & Asanakham, Attakorn & Vorayos, Nat & Kiatsiriroat, Tanongkiat, 2020. "Subcooling effect in steam heat source on irreversibility reduction during supplying heat to an organic Rankine cycle having a solar-assisted biomass boiler," Energy, Elsevier, vol. 194(C).
    20. Wang, Dabiao & Ma, Yuezheng & Tian, Ran & Duan, Jie & Hu, Busong & Shi, Lin, 2018. "Thermodynamic evaluation of an ORC system with a Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 149(C), pages 375-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:396-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.