IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp84-97.html
   My bibliography  Save this article

Numerical investigation of a solar/waste energy driven sorption/desorption cycle employing a novel adsorbent bed

Author

Listed:
  • Bi, Yin
  • Yang, Wansheng
  • Zhao, Xudong

Abstract

This paper presented a numerical investigation into a solar/waste energy driven sorption/desorption cycle employing a novel LiCl-Sillicon-Gels adsorbent bed. Several adsorbent materials available for air drying, e.g., silica gel, zeolites, silica gel haloid compound, consolidated composite desiccant, etc., were compared each other, leading to the selection of a most suitable desiccant material (i.e., LiCl-Sillicon-Gels), which has an adequate regeneration temperature of 80 °C and relatively higher moisture absorption capacity of 0.5 g/g. A dedicated adsorbent bed structure was devised to allow both solar radiation and warm air (generated from the waste heat) to pass through to vaporize the water reserved in the voids of the bed. The mass and energy conservation principles were applied to both air and adsorbent within the bed, leading to the development of a specialist mathematical model able to characterize and evaluate the performance of the sorption/desorption cycle. On this basis, the desorption process driven by both solar radiation and waste heat and associated sorption process were simulated side by side. The performance of the sorption/desorption cycle, represented by moisture extraction volume (Dme), moisture extraction/removal efficiencies (ƞme/ηmr), and dehumidification coefficient of performance (DCOP), and their correlations with the major operational factors, e.g. swapping time of working mode, parametrical data of the process/regeneration air and solar radiation, were investigated and characterized. The results of the research indicated that the system can achieve a good performance (i.e., moisture extraction volume of 7–7.2 g/kg, moisture extraction/removal efficiencies of 0.4–0.5 and 0.5 to 0.57, and DCOP of 0.35–0.37) under a typical wet climatic condition (i.e., 30–35 °C and 70–80% RH). Increasing solar radiation intensity to 1,800 W/m2 could lead to a significant rise in DCOP (from 1 to 5). Furthermore, the geometrical set-up of the adsorbent chambers/beds and cycle was optimized, giving the recommended air flow channel length of 0.7–0.9 m and air flow turning number of 5–7. The swapping time of the beds in terms of the function is suggested to 2.5–3 h. Compared to the conventional adsorption system, the new system can achieve around 90% saving in fossil fuel energy use. In summary, the paper made first of its kind effort in designing, characterizing and optimizing a novel solar/waste energy driven sorption/desorption cycle with LiCl-Sillicon-Gels as the bed filling material, which would help realization of the sustainable air treatment process in both building and industrial sectors, thus contributing to the energy saving, carbon emission reduction, as well as sustainable development on the global scale.

Suggested Citation

  • Bi, Yin & Yang, Wansheng & Zhao, Xudong, 2018. "Numerical investigation of a solar/waste energy driven sorption/desorption cycle employing a novel adsorbent bed," Energy, Elsevier, vol. 149(C), pages 84-97.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:84-97
    DOI: 10.1016/j.energy.2018.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218302494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Li, Y. & Wang, R.Z. & Dai, Y.J., 2008. "A review of the mathematical models for predicting rotary desiccant wheel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1485-1528, August.
    2. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    3. Liu, Weiwei & Lian, Zhiwei & Radermacher, Reinhard & Yao, Ye, 2007. "Energy consumption analysis on a dedicated outdoor air system with rotary desiccant wheel," Energy, Elsevier, vol. 32(9), pages 1749-1760.
    4. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    5. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Shichao & Wang, Shugang & Sun, Yi & Wang, Jihong & Hu, Peiyu & Shang, Jiaxu & Ma, Zhenjun & Liang, Yuntao, 2023. "Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system," Renewable Energy, Elsevier, vol. 215(C).
    2. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    2. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    3. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    4. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    5. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    7. Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
    8. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    9. Ali Mandegari, M. & Pahlavanzadeh, H., 2009. "Introduction of a new definition for effectiveness of desiccant wheels," Energy, Elsevier, vol. 34(6), pages 797-803.
    10. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    11. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    13. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    14. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    15. Chua, K.J. & Chou, S.K. & Islam, M.R., 2018. "On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants," Applied Energy, Elsevier, vol. 220(C), pages 934-943.
    16. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    17. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    18. Abou-Ziyan, H. & Abd El-Raheim, D. & Mahmoud, O. & Fatouh, M., 2017. "Performance characteristics of thin-multilayer activated alumina bed," Applied Energy, Elsevier, vol. 190(C), pages 29-42.
    19. Nóbrega, C.E.L. & Brum, N.C.L., 2011. "A graphical procedure for desiccant cooling cycle design," Energy, Elsevier, vol. 36(3), pages 1564-1570.
    20. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2018. "Review on substrate of solid desiccant dehumidification system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3236-3249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:84-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.