IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i6p1485-1528.html
   My bibliography  Save this article

A review of the mathematical models for predicting rotary desiccant wheel

Author

Listed:
  • Ge, T.S.
  • Li, Y.
  • Wang, R.Z.
  • Dai, Y.J.

Abstract

In the solid desiccant wheel air-conditioning system, the performance of the desiccant wheel is critical to the capability, size and cost of the whole system. Constructing mathematical model is an effective method for analyzing the performance of the rotary wheel as well as the system. The model can also be used to guide system operation, interpret experimental results and assist in system design and optimization. The overall objective of this paper is to provide a review of various efforts that researchers have made to mathematically model the coupled heat and mass transfer process occurring within the wheel. The paper first briefly describes desiccant wheel including fundamental principle, heat and mass transfer mechanism and the method of model establishment. Then various models consisting of ideal assumptions, governing equations, auxiliary conditions, solution methods and main results are presented. The models can be classified into two main categories: (1) gas-side resistance (GSR) model; (2) gas and solid-side resistance (GSSR) model which can be further subdivided into pseudo-gas-side (PGS) model, gas and solid-side (GSS) model and parabolic concentration profile (PCP) model. It shows that GSSR models are higher in precision and more complex compared with GSR models. In addition, the simplified empirical models based on measured data are briefly discussed. This review is useful for understanding the evolution process and status quo of the mathematical model and highlighting the key aspects of model improvement such as taking account of pressure loss or air leakage.

Suggested Citation

  • Ge, T.S. & Li, Y. & Wang, R.Z. & Dai, Y.J., 2008. "A review of the mathematical models for predicting rotary desiccant wheel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1485-1528, August.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:6:p:1485-1528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00032-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, He-Fei & Yu, Jin-Di & Liu, Zu-She, 1996. "The research and development of the key components for desiccant cooling system," Renewable Energy, Elsevier, vol. 9(1), pages 653-656.
    2. Charoensupaya, Dhanes & Worek, William M., 1988. "Parametric study of an open-cycle adiabatic, solid, desiccant cooling system," Energy, Elsevier, vol. 13(9), pages 739-747.
    3. Majumdar, P. & Worek, W.M., 1989. "Combined heat and mass transfer in a porous adsorbent," Energy, Elsevier, vol. 14(3), pages 161-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Hyungmook & Lee, Gilbong & Lee, Dae-Young, 2015. "Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model," Energy, Elsevier, vol. 93(P2), pages 2559-2567.
    2. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    3. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    4. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    5. Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
    6. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    7. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    8. Zhang, He-Fei & Yu, Jin-Di & Liu, Zu-She, 1996. "The research and development of the key components for desiccant cooling system," Renewable Energy, Elsevier, vol. 9(1), pages 653-656.
    9. Dai, Y.J. & Wang, R.Z. & Xu, Y.X., 2002. "Study of a solar powered solid adsorption–desiccant cooling system used for grain storage," Renewable Energy, Elsevier, vol. 25(3), pages 417-430.
    10. Kang, Hyungmook & Choi, Sun & Lee, Dae-Young, 2018. "Analytic solution to predict the outlet air states of a desiccant wheel with an arbitrary split ratio," Energy, Elsevier, vol. 153(C), pages 301-310.
    11. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.

    More about this item

    Keywords

    Desiccant wheel Mathematical model;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:6:p:1485-1528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.