IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i2p330-344.html
   My bibliography  Save this article

Low-grade coal and biomass co-combustion on fluidized bed: exergy analysis

Author

Listed:
  • Martín, Carmen
  • Villamañán, Miguel A.
  • Chamorro, César R.
  • Otero, Juan
  • Cabanillas, Andrés
  • Segovia, José J.

Abstract

The purpose of this work is to prove the technical feasibility of the bubbling fluidized bed co-combustion, using biomass and low-grade coal mixtures and applying the exergy method. The pilot plant modelled is an atmospheric bubbling fluidized bed combustion chamber with a nominal capacity of 1MWth. We have applied the mass balance, the energy balance and the exergy balance to the plant in nine experiments, which have been performed at different operation conditions. The exergy analysis includes the calculation of the exergy destruction and the exergetic efficiency of the plant for these experiments. An estimation of the irreversibility cost is also evaluated.

Suggested Citation

  • Martín, Carmen & Villamañán, Miguel A. & Chamorro, César R. & Otero, Juan & Cabanillas, Andrés & Segovia, José J., 2006. "Low-grade coal and biomass co-combustion on fluidized bed: exergy analysis," Energy, Elsevier, vol. 31(2), pages 330-344.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:2:p:330-344
    DOI: 10.1016/j.energy.2005.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205000101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    2. Coskun, C. & Oktay, Z. & Ilten, N., 2009. "A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition," Energy, Elsevier, vol. 34(11), pages 1898-1902.
    3. Pérez-Jeldres, Rubén & Flores, Mauricio & Cornejo, Pablo & Gordon, Alfredo & García, Ximena, 2018. "Co-firing of coal/biomass blends in a pilot plant facility: A comparative study between Opuntia ficus-indica and Pinus radiata," Energy, Elsevier, vol. 145(C), pages 1-16.
    4. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    5. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    6. Gungor, Afsin, 2009. "Second law analysis of heat transfer surfaces in circulating fluidized beds," Applied Energy, Elsevier, vol. 86(7-8), pages 1344-1353, July.
    7. Topal, Huseyin & Taner, Tolga & Naqvi, Syed Arslan Hassan & Altınsoy, Yelda & Amirabedin, Ehsan & Ozkaymak, Mehmet, 2017. "Exergy analysis of a circulating fluidized bed power plant co-firing with olive pits: A case study of power plant in Turkey," Energy, Elsevier, vol. 140(P1), pages 40-46.
    8. Compton, M. & Rezaie, B., 2017. "Enviro-exergy sustainability analysis of boiler evolution in district energy system," Energy, Elsevier, vol. 119(C), pages 257-265.
    9. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    10. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:2:p:330-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.