IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp975-990.html
   My bibliography  Save this article

Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region

Author

Listed:
  • Suárez de la Fuente, Santiago
  • Larsen, Ulrik
  • Pierobon, Leonardo
  • Kærn, Martin R.
  • Haglind, Fredrik
  • Greig, Alistair

Abstract

As Arctic sea ice coverage declines it is expected that marine traffic could increase in this northern region due to shorter routes. Navigating in the Arctic offers opportunities and challenges for waste heat recovery systems (WHRS). Lower temperatures require larger heating power on board, hence a larger demand for waste heat usage, to cover services and maintaining on board spaces temperatures. However, a lower heat rejection temperature increases the WHRS thermal efficiency. The air temperature for the Arctic route selected is colder than that of the seawater, opening the opportunity of having air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle.

Suggested Citation

  • Suárez de la Fuente, Santiago & Larsen, Ulrik & Pierobon, Leonardo & Kærn, Martin R. & Haglind, Fredrik & Greig, Alistair, 2017. "Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region," Energy, Elsevier, vol. 141(C), pages 975-990.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:975-990
    DOI: 10.1016/j.energy.2017.09.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walraven, Daniël & Laenen, Ben & D’haeseleer, William, 2015. "Minimizing the levelized cost of electricity production from low-temperature geothermal heat sources with ORCs: Water or air cooled?," Applied Energy, Elsevier, vol. 142(C), pages 144-153.
    2. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    3. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    4. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    5. Yamamoto, Takahisa & Furuhata, Tomohiko & Arai, Norio & Mori, Koichi, 2001. "Design and testing of the Organic Rankine Cycle," Energy, Elsevier, vol. 26(3), pages 239-251.
    6. Pierobon, Leonardo & Haglind, Fredrik, 2014. "Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms," Applied Energy, Elsevier, vol. 118(C), pages 156-165.
    7. Nicolas Stanzel & Thomas Streule & Markus Preißinger & Dieter Brüggemann, 2016. "Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck," Energies, MDPI, vol. 9(11), pages 1-16, November.
    8. Moore, J. & Grimes, R. & Walsh, E. & O'Donovan, A., 2014. "Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser," Energy, Elsevier, vol. 69(C), pages 378-391.
    9. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    10. Shu, Gequn & Liang, Youcai & Wei, Haiqiao & Tian, Hua & Zhao, Jian & Liu, Lina, 2013. "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 385-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pawling, Rachel & García Kerdan, Iván & Greig, Alistair & Bucknall, Richard, 2018. "Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit," Energy, Elsevier, vol. 159(C), pages 1046-1059.
    2. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    3. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    4. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pawling, Rachel & García Kerdan, Iván & Greig, Alistair & Bucknall, Richard, 2018. "Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit," Energy, Elsevier, vol. 159(C), pages 1046-1059.
    2. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    3. Rivera-Alvarez, Alejandro & Coleman, Michael J. & Ordonez, Juan C., 2015. "Ship weight reduction and efficiency enhancement through combined power cycles," Energy, Elsevier, vol. 93(P1), pages 521-533.
    4. Zhao, Ying-Kun & Lei, Biao & Wu, Yu-Ting & Zhi, Rui-Ping & Wang, Wei & Guo, Hang & Ma, Chong-Fang, 2018. "Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons," Energy, Elsevier, vol. 165(PB), pages 769-775.
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    8. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    9. Ioannis E. Kosmadakis & Costas Elmasides & Dimitrios Eleftheriou & Konstantinos P. Tsagarakis, 2019. "A Techno-Economic Analysis of a PV-Battery System in Greece," Energies, MDPI, vol. 12(7), pages 1-14, April.
    10. Angelo La Seta & Andrea Meroni & Jesper Graa Andreasen & Leonardo Pierobon & Giacomo Persico & Fredrik Haglind, 2016. "Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study," Energies, MDPI, vol. 9(6), pages 1-17, May.
    11. Song, Jian & Song, Yin & Gu, Chun-wei, 2015. "Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines," Energy, Elsevier, vol. 82(C), pages 976-985.
    12. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    13. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    14. Larsen, Ulrik & Pierobon, Leonardo & Baldi, Francesco & Haglind, Fredrik & Ivarsson, Anders, 2015. "Development of a model for the prediction of the fuel consumption and nitrogen oxides emission trade-off for large ships," Energy, Elsevier, vol. 80(C), pages 545-555.
    15. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Optimization and characterization of a thermoelectric generator prototype for marine engine application," Energy, Elsevier, vol. 143(C), pages 682-695.
    16. Baldi, Francesco & Gabrielii, Cecilia, 2015. "A feasibility analysis of waste heat recovery systems for marine applications," Energy, Elsevier, vol. 80(C), pages 654-665.
    17. Yingjie Zhou & Junrong Tang & Cheng Zhang & Qibin Li, 2019. "Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO 2 /R161 Mixture Based on Natural Draft Dry Cooling Towers," Energies, MDPI, vol. 12(17), pages 1-17, August.
    18. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    19. Alireza Javanshir & Nenad Sarunac & Zahra Razzaghpanah, 2017. "Thermodynamic Analysis of ORC and Its Application for Waste Heat Recovery," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    20. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:975-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.