IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2206-2217.html
   My bibliography  Save this article

The adsorption-swelling and permeability characteristics of natural and reconstituted anthracite coals

Author

Listed:
  • Niu, Qinghe
  • Cao, Liwen
  • Sang, Shuxun
  • Zhou, Xiaozhi
  • Wang, Zhenzhi
  • Wu, Zhiyong

Abstract

To fundamentally study the adsorption capacity, swelling effect and permeability characteristic of coal seams with and without tectonic damage, the natural coal and reconstituted coal manufactured via simulating in situ geological conditions were investigated. The results show that the reconstituted coal possesses higher adsorption equilibrium time and maximum adsorption capacity comparing to the natural coal. The multitudinous intergranular seepage paths and large specific surface area of it supply adequate opportunities and sites for adsorption of injected gas. The anisotropy swelling was observed in the natural coal, which is manifested as that the axial swelling strain surpasses the radial swelling strain. Contrarily, the swelling strain of reconstituted coal is approximated to homogeneous and isotropic variety. The natural coal possesses swelling hysteresis phenomenon in the low adsorption stage, this is because of the deformation sequence from internal swelling to volume swelling conducted in it. The permeability of natural coal and reconstituted coal decreases remarkably after being saturated CO2 and N2. Especially, the permeability sensitivity of reconstituted coal is higher than natural coal and has enormous decreasing amplitude after injected high-pressure CO2, which reveals us that weak coal seams may be the unstable areas for CO2-ECBM or CGS in deep coal seams.

Suggested Citation

  • Niu, Qinghe & Cao, Liwen & Sang, Shuxun & Zhou, Xiaozhi & Wang, Zhenzhi & Wu, Zhiyong, 2017. "The adsorption-swelling and permeability characteristics of natural and reconstituted anthracite coals," Energy, Elsevier, vol. 141(C), pages 2206-2217.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2206-2217
    DOI: 10.1016/j.energy.2017.11.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perera, M.S.A. & Ranjith, P.G. & Viete, D.R., 2013. "Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin," Applied Energy, Elsevier, vol. 110(C), pages 73-81.
    2. Qiangui Zhang & Xiangyu Fan & Yongchang Liang & Minghui Li & Guangzhi Li & Tianshou Ma & Wen Nie, 2017. "Mechanical Behavior and Permeability Evolution of Reconstituted Coal Samples under Various Unloading Confining Pressures—Implications for Wellbore Stability Analysis," Energies, MDPI, vol. 10(3), pages 1-19, March.
    3. Perera, M.S.A. & Ranjith, P.G. & Peter, M., 2011. "Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: Carbon dioxide, water and nitrogen saturations," Energy, Elsevier, vol. 36(12), pages 6941-6947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    2. Jayaraman, Kandasamy & Kök, Mustafa Versan & Gökalp, Iskender, 2020. "Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach," Energy, Elsevier, vol. 204(C).
    3. Kun Zhang & Shuxun Sang & Mengya Ma & Xiaozhi Zhou & Changjiang Liu, 2022. "Experimental Study on the Influence of Effective Stress on the Adsorption–Desorption Behavior of Tectonically Deformed Coal Compared with Primary Undeformed Coal in Huainan Coalfield, China," Energies, MDPI, vol. 15(18), pages 1-19, September.
    4. Li, Zhenbao & Wang, Shaorui & Wei, Gaoming & Wang, Hu & Zhao, Haizhang & Liang, Rui, 2024. "The seepage driving mechanism and effect of CO2 displacing CH4 in coal seam under different pressures," Energy, Elsevier, vol. 293(C).
    5. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    6. Yao, Hongbo & Chen, Yuedu & Liang, Weiguo & Li, Zhigang & Song, Xiaoxia, 2023. "Experimental study on the permeability evolution of coal with CO2 phase transition," Energy, Elsevier, vol. 266(C).
    7. Wang, Zhenzhi & Fu, Xuehai & Pan, Jienan & Deng, Ze, 2023. "Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal," Energy, Elsevier, vol. 275(C).
    8. Zhang, Xiaogang & Jin, Chao & Zhang, Decheng & Zhang, Chengpeng & Ranjith, P.G. & Yuan, Yong, 2023. "Carbon dioxide flow behaviour in macro-scale bituminous coal: An experimental determination of the influence of effective stress," Energy, Elsevier, vol. 268(C).
    9. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    10. Niu, Qinghe & Wang, Qizhi & Wang, Wei & Chang, Jiangfang & Chen, Mingyi & Wang, Haichao & Cai, Nian & Fan, Li, 2022. "Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction," Energy, Elsevier, vol. 238(PB).
    11. Paweł Baran & Katarzyna Czerw & Bogdan Samojeden & Natalia Czuma & Katarzyna Zarębska, 2018. "The Influence of Temperature on the Expansion of a Hard Coal-Gas System," Energies, MDPI, vol. 11(10), pages 1-10, October.
    12. Zhang, Lu & Li, Yuan & Zhou, Hongcang, 2018. "Preparation and characterization of DBU-loaded MCM-41 for adsorption of CO2," Energy, Elsevier, vol. 149(C), pages 414-423.
    13. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    14. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    15. Zhou, Aitao & Du, Chang'ang & Tian, Jie & Xu, Zhiyuan & Wang, Dongxu & Wang, Kai, 2023. "Experimental study on coal deformation induced by gas adsorption-instantaneous pressure relief under unconstrained stress state with different pore structures," Energy, Elsevier, vol. 276(C).
    16. Zhou, Yinbo & Zhang, Ruilin & Huang, Jilei & Li, Zenghua & Chen, Zhao & Zhao, Zhou & Hong, Yidu, 2020. "Influence of alkaline solution injection for wettability and permeability of coal with CO2 injection," Energy, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayal Wanniarachchi & Ranjith Pathegama Gamage & Qiao Lyu & Samintha Perera & Hiruni Wickramarathne & Tharaka Rathnaweera, 2018. "Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-21, December.
    2. Mandadige Samintha Anne Perera & Kadinappuli Hewage Suresh Madushan Sampath & Pathegama Gamage Ranjith & Tharaka Dilanka Rathnaweera, 2018. "Effects of Pore Fluid Chemistry and Saturation Degree on the Fracability of Australian Warwick Siltstone," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Dabbaghi, Ehsan & Ng, Kam, 2024. "Effects of CO2 on the mineralogy, mechanical, and transport properties of rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Yiyu Lu & Yugang Cheng & Zhaolong Ge & Liang Cheng & Shaojie Zuo & Jianyu Zhong, 2016. "Determination of Fracture Initiation Locations during Cross-Measure Drilling for Hydraulic Fracturing of Coal Seams," Energies, MDPI, vol. 9(5), pages 1-13, May.
    5. Geng, Weile & Huang, Gun & Guo, Shengli & Jiang, Changbao & Dong, Ziwen & Wang, Wensong, 2022. "Influence of long-term CH4 and CO2 treatment on the pore structure and mechanical strength characteristics of Baijiao coal," Energy, Elsevier, vol. 242(C).
    6. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    7. Liu, Ang & Liu, Shimin, 2022. "Mechanical property alterations across coal matrix due to water-CO2 treatments: A micro-to-nano scale experimental study," Energy, Elsevier, vol. 248(C).
    8. Shi, Jianhang & Feng, Zengchao & Zhou, Dong & Li, Xuecheng & Meng, Qiaorong, 2023. "Analysis of the permeability evolution law of in situ steam pyrolysis of bituminous coal combing with in situ CT technology," Energy, Elsevier, vol. 263(PD).
    9. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    10. Decheng Zhang & Ranjith Pathegama Gamage & Mandadige Samintha Anne Perera & Chengpeng Zhang & Wanniarachchillage Ayal Maneth Wanniarachchi, 2017. "Influence of Water Saturation on the Mechanical Behaviour of Low-Permeability Reservoir Rocks," Energies, MDPI, vol. 10(2), pages 1-19, February.
    11. Guozhong Hu & Jialin Xu & Fuxi Zhang & Changchun Zhao & Wei Qin & Yiran Zhu, 2015. "Coal and Coalbed Methane Co-Extraction Technology Based on the Ground Movement in the Yangquan Coalfield, China," Energies, MDPI, vol. 8(7), pages 1-17, July.
    12. Mandadige Samintha Anne Perera & Ashani Savinda Ranathunga & Pathegama Gamage Ranjith, 2016. "Effect of Coal Rank on Various Fluid Saturations Creating Mechanical Property Alterations Using Australian Coals," Energies, MDPI, vol. 9(6), pages 1-15, June.
    13. Heng Gao & Jun Lu & Zetian Zhang & Cong Li & Yihang Li, 2023. "Experimental Study on the Effect of Freeze-Thaw Cycles on the Mechanical and Permeability Characteristics of Coal," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    14. Xuyue Chen & Jin Yang & Deli Gao & Yongcun Feng & Yanjun Li & Ming Luo, 2018. "The Maximum-Allowable Well Depth While Drilling of Extended-Reach Wells Targeting to Offshore Depleted Reservoirs," Energies, MDPI, vol. 11(5), pages 1-17, April.
    15. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    16. Ranjith, P.G. & Perera, M.S.A., 2012. "Effects of cleat performance on strength reduction of coal in CO2 sequestration," Energy, Elsevier, vol. 45(1), pages 1069-1075.
    17. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
    18. Isaka, B.L. Avanthi & Ranjith, P.G. & Rathnaweera, T.D. & Perera, M.S.A. & Kumari, W.G.P., 2019. "Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass," Renewable Energy, Elsevier, vol. 136(C), pages 428-441.
    19. Perera, M.S.A. & Ranjith, P.G. & Viete, D.R., 2013. "Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin," Applied Energy, Elsevier, vol. 110(C), pages 73-81.
    20. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2206-2217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.