IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v137y2015icp9-17.html
   My bibliography  Save this article

A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators

Author

Listed:
  • Kang, Huifang
  • Cheng, Peng
  • Yu, Zhibin
  • Zheng, Hongfei

Abstract

This paper presents the design, construction and tests of a traveling-wave thermoacoustic electric generator. A two-stage traveling-wave thermoacoustic engine converts thermal energy to acoustic power. Two low-impedance linear alternators (i.e., audio loudspeakers) were installed to extract and convert the engine’s acoustic power to electricity. The coupling mechanism between the thermoacoustic engine and alternators has been systematically studied numerically and experimentally, hence the optimal locations for installing the linear alternators were identified to maximize the electric power output and/or the thermal-to-electric conversion efficiency. A ball valve was used in the loop to partly correct the acoustic field that was altered by manufacturing errors. A prototype was built based on this new concept, which used pressurized helium at 1.8MPa as the working gas and operated at a frequency of about 171Hz. In the experiment, a maximum electric power of 204W when the hot end temperature of the two regenerators reaches 512°C and 452°C, respectively. A maximum thermal-to-electric efficiency of 3.43% was achieved when the hot end temperature of the two regenerators reaches 597°C and 511°C, respectively. The research results presented in this paper demonstrate that multi-stage traveling-wave thermoacoustic electricity generator has a great potential for developing inexpensive electric generators.

Suggested Citation

  • Kang, Huifang & Cheng, Peng & Yu, Zhibin & Zheng, Hongfei, 2015. "A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators," Applied Energy, Elsevier, vol. 137(C), pages 9-17.
  • Handle: RePEc:eee:appene:v:137:y:2015:i:c:p:9-17
    DOI: 10.1016/j.apenergy.2014.09.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914010381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhibin & Jaworski, Artur J. & Backhaus, Scott, 2012. "Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy," Applied Energy, Elsevier, vol. 99(C), pages 135-145.
    2. Wu, Feng & Chen, Lingen & Li, Duanyong & Ding, Guozhong & Zhang, Chunping & Kan, Xuxian, 2009. "Thermodynamic performance on a thermo-acoustic micro-cycle under the condition of weak gas degeneracy," Applied Energy, Elsevier, vol. 86(7-8), pages 1119-1123, July.
    3. Wu, Zhanghua & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2014. "Development of a 3kW double-acting thermoacoustic Stirling electric generator," Applied Energy, Elsevier, vol. 136(C), pages 866-872.
    4. S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
    5. Sun, D.M. & Wang, K. & Zhang, X.J. & Guo, Y.N. & Xu, Y. & Qiu, L.M., 2013. "A traveling-wave thermoacoustic electric generator with a variable electric R-C load," Applied Energy, Elsevier, vol. 106(C), pages 377-382.
    6. Piccolo, A., 2013. "Optimization of thermoacoustic refrigerators using second law analysis," Applied Energy, Elsevier, vol. 103(C), pages 358-367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism," Applied Energy, Elsevier, vol. 171(C), pages 172-183.
    2. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    4. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    5. Callanan, J. & Nouh, M., 2019. "Optimal thermoacoustic energy extraction via temporal phase control and traveling wave generation," Applied Energy, Elsevier, vol. 241(C), pages 599-612.
    6. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    7. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
    8. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    9. Wang, Kai & Sun, Daming & Zhang, Jie & Xu, Ya & Zou, Jiang & Wu, Ke & Qiu, Limin & Huang, Zhiyi, 2015. "Operating characteristics and performance improvements of a 500W traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 160(C), pages 853-862.
    10. Al-Kayiem, Ali & Yu, Zhibin, 2016. "Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe," Energy, Elsevier, vol. 112(C), pages 111-120.
    11. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Zhang, Guolutiao & Wang, Ziyan & Wu, Weifeng & Wang, Shunsen & Zhao, Pan, 2023. "Modeling and thermodynamic analysis of a novel combined cooling and power system composed of alkali metal thermal electric converter and looped multistage thermoacoustically-driven refrigerator," Energy, Elsevier, vol. 263(PD).
    12. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    13. Hamood, Ahmed & Jaworski, Artur J. & Mao, Xiaoan & Simpson, Kevin, 2018. "Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator," Energy, Elsevier, vol. 144(C), pages 61-72.
    14. Abdoulla-Latiwish, Kalid O.A. & Mao, Xiaoan & Jaworski, Artur J., 2017. "Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities," Energy, Elsevier, vol. 134(C), pages 1107-1120.
    15. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
    16. Augusto Montisci & Marco Caredda, 2021. "A Static Hybrid Renewable Energy System for Off-Grid Supply," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    17. Bi, Tianjiao & Wu, Zhanghua & Chen, Wei & Zhang, Limin & Luo, Ercang & Zhang, Bin, 2022. "Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 239(PB).
    18. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
    2. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    3. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    4. Sun, D.M. & Wang, K. & Zhang, X.J. & Guo, Y.N. & Xu, Y. & Qiu, L.M., 2013. "A traveling-wave thermoacoustic electric generator with a variable electric R-C load," Applied Energy, Elsevier, vol. 106(C), pages 377-382.
    5. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
    6. Al-Kayiem, Ali & Yu, Zhibin, 2016. "Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe," Energy, Elsevier, vol. 112(C), pages 111-120.
    7. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
    8. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Wang, Kai & Sun, Daming & Zhang, Jie & Xu, Ya & Zou, Jiang & Wu, Ke & Qiu, Limin & Huang, Zhiyi, 2015. "Operating characteristics and performance improvements of a 500W traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 160(C), pages 853-862.
    10. Bi, Tianjiao & Wu, Zhanghua & Chen, Wei & Zhang, Limin & Luo, Ercang & Zhang, Bin, 2022. "Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 239(PB).
    11. Napolitano, Marialuisa & Romano, Rosario & Dragonetti, Raffaele, 2017. "Open-cell foams for thermoacoustic applications," Energy, Elsevier, vol. 138(C), pages 147-156.
    12. Wu, Zhanghua & Zhang, Limin & Dai, Wei & Luo, Ercang, 2014. "Investigation on a 1kW traveling-wave thermoacoustic electrical generator," Applied Energy, Elsevier, vol. 124(C), pages 140-147.
    13. Elhawary, M.A. & Ibrahim, Abdelmaged H. & Sabry, Ashraf S. & Abdel-Rahman, Ehab, 2020. "Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 414-426.
    14. Tang, K. & Feng, Y. & Jin, S.H. & Jin, T. & Li, M., 2015. "Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 148(C), pages 305-313.
    15. Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
    16. Hamood, Ahmed & Jaworski, Artur J. & Mao, Xiaoan & Simpson, Kevin, 2018. "Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator," Energy, Elsevier, vol. 144(C), pages 61-72.
    17. Callanan, J. & Nouh, M., 2019. "Optimal thermoacoustic energy extraction via temporal phase control and traveling wave generation," Applied Energy, Elsevier, vol. 241(C), pages 599-612.
    18. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    19. Steiner, Thomas W. & Archibald, Geoffrey D.S., 2014. "A high pressure and high frequency diaphragm engine: Comparison of measured results with thermoacoustic predictions," Applied Energy, Elsevier, vol. 114(C), pages 709-716.
    20. Yu, Guoyao & Wang, Xiaotao & Dai, Wei & Luo, Ercang, 2013. "Study on energy conversion characteristics of a high frequency standing-wave thermoacoustic heat engine," Applied Energy, Elsevier, vol. 111(C), pages 1147-1151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:137:y:2015:i:c:p:9-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.