IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v136y2017icp45-51.html
   My bibliography  Save this article

Theoretical and empirical study of heat and mass transfer inside a basin type solar still

Author

Listed:
  • Madhlopa, A.

Abstract

Heat and mass transfer between the surfaces of the cover and saline water in a solar still occurs through convection (hc,w−gc), evaporation (he,w−gc) and radiation (hr,w−gc). All these three coefficients of heat transfer influence the performance of the solar still, and so they need to be computed accurately. In this study, two recent models for calculating the coefficient of evaporative heat transfer (he,w−gc) have been investigated by taking into account view factors of radiative heat exchange. In the first model (Model 1), the vapour concentration ratio (Cr = he,w−gc/hc,w−gc) depends on different thermodynamic variables inside the solar still. The other model of Cr (Model 2) is a third-order polynomial function of the operating temperature of the solar still (Ti). Results show that Cr has a critical value for Model 1 with no turning point for Model 2 in the considered temperature range. There exists an operating temperature Ti=Tis at which the two models yield the same value of Cr. Estimates of the coefficient of he,w−gc obtained by using Model 1 are higher than those of Model 2 when Ti < Tis, with a reversed trend when Ti > Tis. Model 1 exhibits lower values of the root mean square error.

Suggested Citation

  • Madhlopa, A., 2017. "Theoretical and empirical study of heat and mass transfer inside a basin type solar still," Energy, Elsevier, vol. 136(C), pages 45-51.
  • Handle: RePEc:eee:energy:v:136:y:2017:i:c:p:45-51
    DOI: 10.1016/j.energy.2016.09.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216313986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    2. Rahbar, N. & Esfahani, J.A., 2013. "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis," Energy, Elsevier, vol. 49(C), pages 289-297.
    3. Kumar, Sanjay & Tiwari, G.N., 1996. "Performance evaluation of an active solar distillation system," Energy, Elsevier, vol. 21(9), pages 805-808.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, W.L. & Xie, G., 2022. "Performance of multi-stage tubular solar still operating under vacuum," Renewable Energy, Elsevier, vol. 201(P2), pages 34-46.
    2. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    3. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    4. Saeedi, F. & Sarhaddi, F. & Behzadmehr, A., 2015. "Optimization of a PV/T (photovoltaic/thermal) active solar still," Energy, Elsevier, vol. 87(C), pages 142-152.
    5. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    6. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    7. Singh, D.B., 2018. "Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still," Energy, Elsevier, vol. 148(C), pages 546-560.
    8. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    9. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    10. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    11. Chandrakant R. Sonawane & Hitesh N. Panchal & Siamak Hoseinzadeh & Mohammad Hadi Ghasemi & Ali Jawad Alrubaie & Ali Sohani, 2022. "Bibliometric Analysis of Solar Desalination Systems Powered by Solar Energy and CFD Modelled," Energies, MDPI, vol. 15(14), pages 1-13, July.
    12. Sampathkumar, K. & Arjunan, T.V. & Pitchandi, P. & Senthilkumar, P., 2010. "Active solar distillation--A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1503-1526, August.
    13. Hadidi, N. & Ould-Amer, Y. & Bennacer, R., 2013. "Bi-layered and inclined porous collector: Optimum heat and mass transfer," Energy, Elsevier, vol. 51(C), pages 422-430.
    14. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    15. Jamil, Furqan & Hassan, Faisal & Shoeibi, Shahin & Khiadani, Mehdi, 2023. "Application of advanced energy storage materials in direct solar desalination: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    16. Panchal, Hitesh N., 2016. "Use of thermal energy storage materials for enhancement in distillate output of solar still: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 86-96.
    17. Djamal Eddine Benhadji Serradj & Timothy Anderson & Roy Nates, 2022. "The Effect of Geometry on the Yield of Fresh Water from Single Slope Solar Stills," Energies, MDPI, vol. 15(19), pages 1-18, October.
    18. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    19. Rashidi, Saman & Akar, Shima & Bovand, Masoud & Ellahi, Rahmat, 2018. "Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still," Renewable Energy, Elsevier, vol. 115(C), pages 400-410.
    20. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:136:y:2017:i:c:p:45-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.