IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp563-576.html
   My bibliography  Save this article

Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building

Author

Listed:
  • Dodoo, Ambrose
  • Gustavsson, Leif
  • Tettey, Uniben Y.A.

Abstract

In this study we present a method for analysis of cost-effectiveness of end-use energy efficiency measures and demonstrate its application for modelling a wide range of energy renovation measures for a typical 1970s multi-family building in Sweden. The method integrates energy balance and bottom-up economic calculations considering total and marginal investment costs of energy efficiency measures as well as net present value of total and marginal savings of the measures. The energy renovation measures explored include additional insulation to basement walls, exterior walls, and attic floor, improved new windows, efficient electric appliances and lighting, efficient water taps, glazed enclosed balcony systems, and exhaust air ventilation heat recovery systems. The measures are analysed first individually and then designed to form economic packages. Our results show that improved windows give the biggest single final energy savings while resource-efficient taps is the most cost-effective measure for the building. We find that the cost-effectiveness of the energy renovation measures is sensitive to real discount rates and energy price increases. Cost-optimal final heat savings varies between 34% and 51%, depending on the choice of real discount rate and energy price increase. The corresponding electricity savings varies between 35% and 43%. This study shows a method and the significance of various technical and economic-related parameters in achieving deep energy savings cost-efficiently.

Suggested Citation

  • Dodoo, Ambrose & Gustavsson, Leif & Tettey, Uniben Y.A., 2017. "Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building," Energy, Elsevier, vol. 135(C), pages 563-576.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:563-576
    DOI: 10.1016/j.energy.2017.06.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2015. "Renewable-based heat supply of multi-apartment buildings with varied heat demands," Energy, Elsevier, vol. 93(P1), pages 1053-1062.
    2. Hans Lind & Kerstin Annadotter & Folke Björk & Lovisa Högberg & Tord Af Klintberg, 2016. "Sustainable Renovation Strategy in the Swedish Million Homes Programme: A Case Study," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    3. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2014. "Effects of heat and electricity saving measures in district-heated multistory residential buildings," Applied Energy, Elsevier, vol. 118(C), pages 57-67.
    4. Tom Van der Stocken & Jean Hugé & Evelien Deboelpaep & Maarten P. M. Vanhove & Luc Janssens de Bisthoven & Nico Koedam, 2016. "Academic capacity building: holding up a mirror," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1277-1280, March.
    5. Ionit ă. Ion & Serban Costel, 2016. "Management Efficiency Building Materials," International Journal of Sustainable Economies Management (IJSEM), IGI Global, vol. 5(2), pages 14-20, April.
    6. Wu, Zhou & Wang, Bo & Xia, Xiaohua, 2016. "Large-scale building energy efficiency retrofit: Concept, model and control," Energy, Elsevier, vol. 109(C), pages 456-465.
    7. ., 2016. "From MoDo to Holmen: the building blocs," Chapters, in: Rethinking Corporate Governance, chapter 8, pages 155-207, Edward Elgar Publishing.
    8. Remer, Donald S. & Nieto, Armando P., 1995. "A compendium and comparison of 25 project evaluation techniques. Part 2: Ratio, payback, and accounting methods," International Journal of Production Economics, Elsevier, vol. 42(2), pages 101-129, December.
    9. Remer, Donald S. & Nieto, Armando P., 1995. "A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods," International Journal of Production Economics, Elsevier, vol. 42(1), pages 79-96, November.
    10. Lovisa Högberg & Hans Lind & Kristina Grange, 2009. "Incentives for Improving Energy Efficiency When Renovating Large-Scale Housing Estates: A Case Study of the Swedish Million Homes Programme," Sustainability, MDPI, vol. 1(4), pages 1-17, December.
    11. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    12. Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe & Gustavsson, Leif, 2017. "Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings," Energy, Elsevier, vol. 120(C), pages 718-730.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi He & Yanting Wang & Ziye Song & Hongwen Yu & Yibing Xue, 2023. "Study on Carbon Emissions from the Renovation of Old Residential Areas in Cold Regions of China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    2. Wang, Yuhao & Qu, Ke & Chen, Xiangjie & Zhang, Xingxing & Riffat, Saffa, 2022. "Holistic electrification vs deep energy retrofits for optimal decarbonisation pathways of UK dwellings: A case study of the 1940s’ British post-war masonry house," Energy, Elsevier, vol. 241(C).
    3. Tina Lidberg & Thomas Olofsson & Louise Ödlund, 2019. "Impact of Domestic Hot Water Systems on District Heating Temperatures," Energies, MDPI, vol. 12(24), pages 1-14, December.
    4. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    5. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    6. Blumberga, Andra & Vanaga, Ruta & Freimanis, Ritvars & Blumberga, Dagnija & Antužs, Juris & Krastiņš, Artūrs & Jankovskis, Ivars & Bondars, Edgars & Treija, Sandra, 2020. "Transition from traditional historic urban block to positive energy block," Energy, Elsevier, vol. 202(C).
    7. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Hoare, Cathal & Purcell, Karl & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings," Applied Energy, Elsevier, vol. 267(C).
    8. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany," Energies, MDPI, vol. 12(8), pages 1-21, April.
    9. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Cost-benefit analysis of retrofitting attic-integrated switchable insulation systems of existing US residential buildings," Energy, Elsevier, vol. 221(C).
    10. Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
    11. Dodoo, Ambrose & Gustavsson, Leif & Le Truong, Nguyen, 2018. "Primary energy benefits of cost-effective energy renovation of a district heated multi-family building under different energy supply systems," Energy, Elsevier, vol. 143(C), pages 69-90.
    12. Ohlsson, K.E. Anders & Nair, Gireesh & Olofsson, Thomas, 2022. "Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
    14. Pulkkinen, Jari & Louis, Jean-Nicolas & Debusschere, Vincent & Pongrácz, Eva, 2024. "Near-, medium- and long-term impacts of climate change on the thermal energy consumption of buildings in Finland under RCP climate scenarios," Energy, Elsevier, vol. 302(C).
    15. Muhammad Mushafiq & Muzammil Muhammad Khan Arisar & Hanan Tariq & Stanislaw Czapp, 2023. "Energy Efficiency and Economic Policy: Comprehensive Theoretical, Empirical, and Policy Review," Energies, MDPI, vol. 16(5), pages 1-22, March.
    16. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    17. Davor Končalović & Jelena Nikolic & Vladimir Vukasinovic & Dušan Gordić & Dubravka Živković, 2022. "Possibilities for Deep Renovation in Multi-Apartment Buildings in Different Economic Conditions in Europe," Energies, MDPI, vol. 15(8), pages 1-15, April.
    18. Reuter, Matthias & Patel, Martin K. & Eichhammer, Wolfgang & Lapillonne, Bruno & Pollier, Karine, 2020. "A comprehensive indicator set for measuring multiple benefits of energy efficiency," Energy Policy, Elsevier, vol. 139(C).
    19. Piccardo, Chiara & Gustavsson, Leif, 2023. "Deep energy retrofits using different retrofit materials under different scenarios: Life cycle cost and primary energy implications," Energy, Elsevier, vol. 281(C).
    20. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    21. Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer & Marcus Gustafsson, 2019. "Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios," Energies, MDPI, vol. 12(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dodoo, Ambrose & Gustavsson, Leif & Le Truong, Nguyen, 2018. "Primary energy benefits of cost-effective energy renovation of a district heated multi-family building under different energy supply systems," Energy, Elsevier, vol. 143(C), pages 69-90.
    2. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    3. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    4. Meleddu, Marta & Pulina, Manuela, 2018. "Public spending on renewable energy in Italian regions," Renewable Energy, Elsevier, vol. 115(C), pages 1086-1098.
    5. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    6. Magni, Carlo Alberto, 2016. "Capital depreciation and the underdetermination of rate of return: A unifying perspective," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 54-79.
    7. Kristina Mjörnell & Paula Femenías & Kerstin Annadotter, 2019. "Renovation Strategies for Multi-Residential Buildings from the Record Years in Sweden—Profit-Driven or Socioeconomically Responsible?," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    8. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    9. Cuthbert, James R. & Magni, Carlo Alberto, 2016. "Measuring the inadequacy of IRR in PFI schemes using profitability index and AIRR," International Journal of Production Economics, Elsevier, vol. 179(C), pages 130-140.
    10. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    11. Carlo Alberto Magni & Ken V. Peasnell, 2015. "The Term Structure of Capital Values:An accounting-based framework for measuring economic profitability," Department of Economics 0060, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    12. Hosseininasab, Amin & Ahmadi, Abbas, 2015. "Selecting a supplier portfolio with value, development, and risk consideration," European Journal of Operational Research, Elsevier, vol. 245(1), pages 146-156.
    13. Yasser Alizadeh & Antonie J. Jetter, 2019. "Pathways for Balancing Exploration and Exploitation in Innovations: A Review and Expansion of Ambidexterity Theory," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-33, August.
    14. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    15. Ekaterina Makarova & Anna Sokolova, 2012. "The Best Practices of Evaluating S&T Foresight: Basic Elements and Key Criteria," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 6(3), pages 62-74.
    16. Cuéllar-Franca, Rosa & García-Gutiérrez, Pelayo & Dimitriou, Ioanna & Elder, Rachael H. & Allen, Ray W.K. & Azapagic, Adisa, 2019. "Utilising carbon dioxide for transport fuels: The economic and environmental sustainability of different Fischer-Tropsch process designs," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Man Ying (Annie) Ho & Joseph H. K. Lai & Huiying (Cynthia) Hou & Dadi Zhang, 2021. "Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey," Energies, MDPI, vol. 14(21), pages 1-30, November.
    18. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    19. Joan Carles FERRER-COMALAT & Salvador LINARES-MUSTAROS & Dolors COROMINAS-COLL, 2016. "A Model For Optimal Investment Project Choice Using Fuzzy Probability," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(4), pages 187-203.
    20. Martín-Martínez, F. & Sánchez-Miralles, A. & Rivier, M. & Calvillo, C.F., 2017. "Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study," Energy, Elsevier, vol. 134(C), pages 850-863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:563-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.