IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006359.html
   My bibliography  Save this article

Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows

Author

Listed:
  • Ohlsson, K.E. Anders
  • Nair, Gireesh
  • Olofsson, Thomas

Abstract

Energy saving in buildings is an important measure for mitigation of climate change. There exists a large potential for energy saving in buildings by improving the thermal performance of windows. For decisions on energy saving window retrofits, accurate estimation of the energy saved and its uncertainty is of importance. The ISO 15099 standard, which is normative for thermal modelling of windows within the building sector, does not give uncertainty estimates. The main novelty of this study was to provide uncertainty analysis for model prediction of the thermal transmittance of windows, in the perspective of decisions on window retrofits. For this purpose, we proposed a new simplified model, which facilitated uncertainty analysis, and still was similar to the ISO 15099 window model. The model was validated by application of a benchmark validation procedure to a set of previously performed validation experiments. Main conclusions were: (i) The model was accurate within a prediction uncertainty equal to 0.20 Wm−2K−1; (ii) The domain where the model is valid was described using existing well-documented validation experiments. This domain was restricted to windows with glazing thermal transmittance corresponding to 2-layer glazing, and to windows where the frame area is a minor part of the total window area. (iii) The prediction uncertainty was mainly determined by the measurement uncertainty in the validation experiments; (iv) If a window retrofit is based on reduction of window thermal transmittance, then this reduction has to be larger than 0.56 Wm−2K−1 in order to yield energy savings above the uncertainty limit.

Suggested Citation

  • Ohlsson, K.E. Anders & Nair, Gireesh & Olofsson, Thomas, 2022. "Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006359
    DOI: 10.1016/j.rser.2022.112748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dodoo, Ambrose & Gustavsson, Leif & Tettey, Uniben Y.A., 2017. "Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building," Energy, Elsevier, vol. 135(C), pages 563-576.
    2. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    3. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    4. Manz, Heinrich, 2008. "On minimizing heat transport in architectural glazing," Renewable Energy, Elsevier, vol. 33(1), pages 119-128.
    5. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    6. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    7. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    8. Paolo Bertoldi & Marina Economidou & Valentina Palermo & Benigna Boza‐Kiss & Valeria Todeschi, 2021. "How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.
    9. Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
    10. Wei, Wu & Skye, Harrison M., 2021. "Residential net-zero energy buildings: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Mata, Érika & Sasic Kalagasidis, Angela & Johnsson, Filip, 2013. "Energy usage and technical potential for energy saving measures in the Swedish residential building stock," Energy Policy, Elsevier, vol. 55(C), pages 404-414.
    12. Ohlsson, K.E. Anders & Olofsson, Thomas, 2021. "Benchmarking the practice of validation and uncertainty analysis of building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    14. Mata, Érika & Kalagasidis, Angela Sasic & Johnsson, Filip, 2018. "Contributions of building retrofitting in five member states to EU targets for energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 759-774.
    15. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. He, Qiong & Hossain, Md. Uzzal & Ng, S. Thomas & Augenbroe, Godfried, 2021. "Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ohlsson, K.E. Anders & Olofsson, Thomas, 2021. "Benchmarking the practice of validation and uncertainty analysis of building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Severinsen, A. & Myrland, Ø., 2022. "Statistical learning to estimate energy savings from retrofitting in the Norwegian food retail market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    4. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    5. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    7. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    8. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    10. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    11. Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).
    12. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    13. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    14. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
    15. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    16. Gourlis, Georgios & Kovacic, Iva, 2017. "Building Information Modelling for analysis of energy efficient industrial buildings – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 953-963.
    17. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    18. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    19. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    20. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.