IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v38y2012i1p173-180.html
   My bibliography  Save this article

Method for component-based economical optimisation for use in design of new low-energy buildings

Author

Listed:
  • Petersen, Steffen
  • Svendsen, Svend

Abstract

Increasing requirements for energy performance in new buildings mean the cost of incorporating energy-saving in buildings is also increasing. Building designers thus need to be aware of the long-term cost-effectiveness of potential energy-conserving measures. This paper presents a simplified and transparent economic optimisation method to find an initial design proposal near the economical optimum. The aim is to provide an expedient starting point for the building design process and more detailed economic optimisation. The method uses the energy frame concept to express the constraints of the optimisation problem, which is then solved by minimising the costs of conserving energy in all the individual energy-saving measures. A case example illustrates how the method enables designers to establish a qualified estimate of an economically optimal solution. Such an estimate gives a good starting point for the iterative design process and a more detailed economic optimisation. Furthermore, the method explicitly illustrates the economic efficiency of the individual building elements and services enabling the identification of potentials for further product development.

Suggested Citation

  • Petersen, Steffen & Svendsen, Svend, 2012. "Method for component-based economical optimisation for use in design of new low-energy buildings," Renewable Energy, Elsevier, vol. 38(1), pages 173-180.
  • Handle: RePEc:eee:renene:v:38:y:2012:i:1:p:173-180
    DOI: 10.1016/j.renene.2011.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piette, Mary Ann & Nordman, Bruce & de Buen, Odon & Diamond, Rick, 1995. "Findings from a low-energy, new commercial-buildings research and demonstration project," Energy, Elsevier, vol. 20(6), pages 471-482.
    2. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    3. Gieseler, U.D.J. & Heidt, F.D. & Bier, W., 2004. "Evaluation of the cost efficiency of an energy efficient building," Renewable Energy, Elsevier, vol. 29(3), pages 369-376.
    4. Remer, Donald S. & Nieto, Armando P., 1995. "A compendium and comparison of 25 project evaluation techniques. Part 2: Ratio, payback, and accounting methods," International Journal of Production Economics, Elsevier, vol. 42(2), pages 101-129, December.
    5. Remer, Donald S. & Nieto, Armando P., 1995. "A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods," International Journal of Production Economics, Elsevier, vol. 42(1), pages 79-96, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    2. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    3. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    4. Morelli, Martin & Harrestrup, Maria & Svendsen, Svend, 2014. "Method for a component-based economic optimisation in design of whole building renovation versus demolishing and rebuilding," Energy Policy, Elsevier, vol. 65(C), pages 305-314.
    5. Man Ying (Annie) Ho & Joseph H. K. Lai & Huiying (Cynthia) Hou & Dadi Zhang, 2021. "Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey," Energies, MDPI, vol. 14(21), pages 1-30, November.
    6. Baldwin, Andrew N. & Loveday, Dennis L. & Li, Baizhan & Murray, Michael & Yu, Wei, 2018. "A research agenda for the retrofitting of residential buildings in China – A case study," Energy Policy, Elsevier, vol. 113(C), pages 41-51.
    7. De Luca, Giovanna & Ballarini, Ilaria & Lorenzati, Alice & Corrado, Vincenzo, 2020. "Renovation of a social house into a NZEB: Use of renewable energy sources and economic implications," Renewable Energy, Elsevier, vol. 159(C), pages 356-370.
    8. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    9. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    10. Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
    11. Qiong He & Md. Uzzal Hossain & S. Thomas Ng & Godfried L. Augenbroe, 2020. "Retrofitting High-Rise Residential Building in Cold and Severe Cold Zones of China—A Deterministic Decision-Making Mechanism," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    12. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    13. Amoah B.O. Kwame & Nguyen V. Troy & Najafi Hamidreza, 2020. "A Multi-Facet Retrofit Approach to Improve Energy Efficiency of Existing Class of Single-Family Residential Buildings in Hot-Humid Climate Zones," Energies, MDPI, vol. 13(5), pages 1-26, March.
    14. Zandi, M. & Bahrami, M. & Eslami, S. & Gavagsaz-Ghoachani, R. & Payman, A. & Phattanasak, M. & Nahid-Mobarakeh, B. & Pierfederici, S., 2017. "Evaluation and comparison of economic policies to increase distributed generation capacity in the Iranian household consumption sector using photovoltaic systems and RETScreen software," Renewable Energy, Elsevier, vol. 107(C), pages 215-222.
    15. Lee, Kyoung-Ho & Lee, Dong-Won & Baek, Nam-Choon & Kwon, Hyeok-Min & Lee, Chang-Jun, 2012. "Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen," Energy, Elsevier, vol. 47(1), pages 83-96.
    16. Gholami, Aslan & Saboonchi, Ahmad & Alemrajabi, Ali Akbar, 2017. "Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications," Renewable Energy, Elsevier, vol. 112(C), pages 466-473.
    17. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magni, Carlo Alberto, 2016. "Capital depreciation and the underdetermination of rate of return: A unifying perspective," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 54-79.
    2. Dodoo, Ambrose & Gustavsson, Leif & Tettey, Uniben Y.A., 2017. "Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building," Energy, Elsevier, vol. 135(C), pages 563-576.
    3. Cuthbert, James R. & Magni, Carlo Alberto, 2016. "Measuring the inadequacy of IRR in PFI schemes using profitability index and AIRR," International Journal of Production Economics, Elsevier, vol. 179(C), pages 130-140.
    4. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    5. Carlo Alberto Magni & Ken V. Peasnell, 2015. "The Term Structure of Capital Values:An accounting-based framework for measuring economic profitability," Department of Economics 0060, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    6. Hosseininasab, Amin & Ahmadi, Abbas, 2015. "Selecting a supplier portfolio with value, development, and risk consideration," European Journal of Operational Research, Elsevier, vol. 245(1), pages 146-156.
    7. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    8. Joan Carles FERRER-COMALAT & Salvador LINARES-MUSTAROS & Dolors COROMINAS-COLL, 2016. "A Model For Optimal Investment Project Choice Using Fuzzy Probability," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(4), pages 187-203.
    9. Laura Gabrielli & Aurora Greta Ruggeri & Massimiliano Scarpa, 2023. "Roadmap to a Sustainable Energy System: Is Uncertainty a Major Barrier to Investments for Building Energy Retrofit Projects in Wide City Compartments?," Energies, MDPI, vol. 16(11), pages 1-21, May.
    10. Copiello, Sergio & Gabrielli, Laura & Bonifaci, Pietro, 2017. "Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate," Energy, Elsevier, vol. 137(C), pages 104-117.
    11. Costa, Joao P. & Melo, Paulo & Godinho, Pedro & Dias, Luis C., 2003. "The AGAP system: A GDSS for project analysis and evaluation," European Journal of Operational Research, Elsevier, vol. 145(2), pages 287-303, March.
    12. Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2022. "Economic Assessment of Demand Response Using Coupled National and Regional Optimisation Models," Energies, MDPI, vol. 15(22), pages 1-25, November.
    13. Maciej Nowak & Tadeusz Trzaskalik, 2022. "A trade-off multiobjective dynamic programming procedure and its application to project portfolio selection," Annals of Operations Research, Springer, vol. 311(2), pages 1155-1181, April.
    14. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2020. "Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    15. Yasser Alizadeh & Antonie J. Jetter, 2019. "Pathways for Balancing Exploration and Exploitation in Innovations: A Review and Expansion of Ambidexterity Theory," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-33, August.
    16. Ekaterina Makarova & Anna Sokolova, 2012. "The Best Practices of Evaluating S&T Foresight: Basic Elements and Key Criteria," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 6(3), pages 62-74.
    17. Cuéllar-Franca, Rosa & García-Gutiérrez, Pelayo & Dimitriou, Ioanna & Elder, Rachael H. & Allen, Ray W.K. & Azapagic, Adisa, 2019. "Utilising carbon dioxide for transport fuels: The economic and environmental sustainability of different Fischer-Tropsch process designs," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Man Ying (Annie) Ho & Joseph H. K. Lai & Huiying (Cynthia) Hou & Dadi Zhang, 2021. "Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey," Energies, MDPI, vol. 14(21), pages 1-30, November.
    19. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    20. Morelli, Martin & Harrestrup, Maria & Svendsen, Svend, 2014. "Method for a component-based economic optimisation in design of whole building renovation versus demolishing and rebuilding," Energy Policy, Elsevier, vol. 65(C), pages 305-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:38:y:2012:i:1:p:173-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.