IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp336-348.html
   My bibliography  Save this article

Life cycle building impact of a Middle Eastern residential neighborhood

Author

Listed:
  • De Wolf, Catherine
  • Cerezo, Carlos
  • Murtadhawi, Zainab
  • Hajiah, Ali
  • Al Mumin, Adil
  • Ochsendorf, John
  • Reinhart, Christoph

Abstract

Life cycle impacts in buildings includes operational carbon for heating, cooling, hot water, ventilation, lighting, on the one hand, and embodied carbon for material supply, production, transport, construction and disassembly, on the other. Improved operational carbon has increased the percentage of embodied carbon in the total life cycle of buildings. Kuwait is looking at enhancing the sustainability of its built environment, as there is an urgent need to expand and build new cities. This research analyses the sustainability of the Middle Eastern built environment in order to provide the most appropriate strategies to respond to this demand.

Suggested Citation

  • De Wolf, Catherine & Cerezo, Carlos & Murtadhawi, Zainab & Hajiah, Ali & Al Mumin, Adil & Ochsendorf, John & Reinhart, Christoph, 2017. "Life cycle building impact of a Middle Eastern residential neighborhood," Energy, Elsevier, vol. 134(C), pages 336-348.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:336-348
    DOI: 10.1016/j.energy.2017.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cerezo Davila, Carlos & Reinhart, Christoph F. & Bemis, Jamie L., 2016. "Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets," Energy, Elsevier, vol. 117(P1), pages 237-250.
    2. Essam Omar Assem & Fotouh Al-Ragom, 2009. "The effect of reinforced concrete frames on the thermal performance of residential villas in hot climates," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 7(1), pages 46-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    2. Turki Alajmi & Patrick Phelan, 2020. "Modeling and Forecasting End-Use Energy Consumption for Residential Buildings in Kuwait Using a Bottom-Up Approach," Energies, MDPI, vol. 13(8), pages 1-19, April.
    3. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    4. Shuqiang Wang & Qingqing Wu & Jinping Yu, 2024. "BIM-Based Assessment of the Environmental Effects of Various End-of-Life Scenarios for Buildings," Sustainability, MDPI, vol. 16(7), pages 1-18, April.
    5. Žigart, Maja & Kovačič Lukman, Rebeka & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Environmental impact assessment of building envelope components for low-rise buildings," Energy, Elsevier, vol. 163(C), pages 501-512.
    6. Wenliang Li, 2020. "Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data," Energies, MDPI, vol. 13(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yael Nidam & Ali Irani & Jamie Bemis & Christoph Reinhart, 2023. "Census-based urban building energy modeling to evaluate the effectiveness of retrofit programs," Environment and Planning B, , vol. 50(9), pages 2394-2406, November.
    2. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Johari, F. & Lindberg, O. & Ramadhani, U.H. & Shadram, F. & Munkhammar, J. & Widén, J., 2024. "Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM," Applied Energy, Elsevier, vol. 361(C).
    4. Katal, Ali & Mortezazadeh, Mohammad & Wang, Liangzhu (Leon), 2019. "Modeling building resilience against extreme weather by integrated CityFFD and CityBEM simulations," Applied Energy, Elsevier, vol. 250(C), pages 1402-1417.
    5. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    6. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    7. Chao Ding & Nan Zhou, 2020. "Using Residential and Office Building Archetypes for Energy Efficiency Building Solutions in an Urban Scale: A China Case Study," Energies, MDPI, vol. 13(12), pages 1-16, June.
    8. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    9. Avichal Malhotra & Simon Raming & Jérôme Frisch & Christoph van Treeck, 2021. "Open-Source Tool for Transforming CityGML Levels of Detail," Energies, MDPI, vol. 14(24), pages 1-26, December.
    10. Zhang Deng & Yixing Chen & Xiao Pan & Zhiwen Peng & Jingjing Yang, 2021. "Integrating GIS-Based Point of Interest and Community Boundary Datasets for Urban Building Energy Modeling," Energies, MDPI, vol. 14(4), pages 1-17, February.
    11. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    12. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).
    13. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    14. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    15. Nagpal, Shreshth & Hanson, Jared & Reinhart, Christoph, 2019. "A framework for using calibrated campus-wide building energy models for continuous planning and greenhouse gas emissions reduction tracking," Applied Energy, Elsevier, vol. 241(C), pages 82-97.
    16. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    17. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    18. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    19. Wenliang Li, 2020. "Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data," Energies, MDPI, vol. 13(12), pages 1-22, June.
    20. Katal, Ali & Mortezazadeh, Mohammad & Wang, Liangzhu (Leon) & Yu, Haiyi, 2022. "Urban building energy and microclimate modeling – From 3D city generation to dynamic simulations," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:336-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.