IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5931-d638453.html
   My bibliography  Save this article

Integration of Open-Source URBANopt and Dragonfly Energy Modeling Capabilities into Practitioner Workflows for District-Scale Planning and Design

Author

Listed:
  • Tanushree Charan

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Christopher Mackey

    (Ladybug Tools LLC, Fairfax, VA 22031-0000, USA)

  • Ali Irani

    (Skidmore, Owings & Merrill, Chicago, IL 60604, USA
    The author completed the research while at Skidmore, Owings & Merrill, but is at the Massachusetts Institute of Technology at the time of publishing.)

  • Ben Polly

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Stephen Ray

    (Skidmore, Owings & Merrill, Chicago, IL 60604, USA)

  • Katherine Fleming

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Rawad El Kontar

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Nathan Moore

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Tarek Elgindy

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Dylan Cutler

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
    The author completed the research while at the National Renewable Energy Laboratory, but is at Camus Energy at the time of publishing.)

  • Mostapha Sadeghipour Roudsari

    (Ladybug Tools LLC, Fairfax, VA 22031-0000, USA)

  • David Goldwasser

    (Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA)

Abstract

High-performance districts and communities offer opportunities for reducing energy use, emissions, and costs, and can be instrumental in helping cities achieve their climate goals. The design of such communities requires identification of opportunities early on and their re-evaluation throughout the planning process. There is a need for energy modeling tools that connect 3D Computer-Aided Design (CAD) platforms to simulation engines, enabling detailed energy analysis of districts within the workflows and tools used by practitioners. This paper introduces the Dragonfly and URBANopt TM combined toolset that supports the creation of urban models from a range of geometry formats typically used by designers and planners, and provides an integrated pathway to simulate district-scale energy systems. The toolset is piloted by a global architecture and master planning firm to evaluate several key urban-scale technical questions for the design of a district in Chicago. The findings indicate that, while energy savings can be achieved through traditional architectural studies and enhancements to individual building efficiency, the modeling toolset helps identify additional savings and insights that can be achieved when considering district-scale energy systems. Finally, this study demonstrates how the Dragonfly/URBANopt toolset can integrate with master planning workflows, thereby enabling an iterative performance-based design process.

Suggested Citation

  • Tanushree Charan & Christopher Mackey & Ali Irani & Ben Polly & Stephen Ray & Katherine Fleming & Rawad El Kontar & Nathan Moore & Tarek Elgindy & Dylan Cutler & Mostapha Sadeghipour Roudsari & David , 2021. "Integration of Open-Source URBANopt and Dragonfly Energy Modeling Capabilities into Practitioner Workflows for District-Scale Planning and Design," Energies, MDPI, vol. 14(18), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5931-:d:638453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cerezo Davila, Carlos & Reinhart, Christoph F. & Bemis, Jamie L., 2016. "Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets," Energy, Elsevier, vol. 117(P1), pages 237-250.
    2. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    3. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    4. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    5. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Kamel, 2022. "A Systematic Literature Review of Physics-Based Urban Building Energy Modeling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation," Energies, MDPI, vol. 15(22), pages 1-24, November.
    2. Martin, Rit & Arthur, Thomas & Jonathan, Villot & Mathieu, Thorel & Enora, Garreau & Robin, Girard, 2024. "SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    2. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Viktor Bukovszki & Ábel Magyari & Marina Kristina Braun & Kitti Párdi & András Reith, 2020. "Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective," Energies, MDPI, vol. 13(9), pages 1-44, May.
    4. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    6. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.
    7. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    8. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    9. Verena Weiler & Ursula Eicker, 2021. "Automatic energy demand and system simulation at district level," Sustainability Nexus Forum, Springer, vol. 29(2), pages 133-141, June.
    10. Yanxia Li & Chao Wang & Sijie Zhu & Junyan Yang & Shen Wei & Xinkai Zhang & Xing Shi, 2020. "A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China," Energies, MDPI, vol. 13(18), pages 1-23, September.
    11. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    12. Heidenthaler, Daniel & Deng, Yingwen & Leeb, Markus & Grobbauer, Michael & Kranzl, Lukas & Seiwald, Lena & Mascherbauer, Philipp & Reindl, Patricia & Bednar, Thomas, 2023. "Automated energy performance certificate based urban building energy modelling approach for predicting heat load profiles of districts," Energy, Elsevier, vol. 278(PB).
    13. Pylsy, Petri & Lylykangas, Kimmo & Kurnitski, Jarek, 2020. "Buildings’ energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Johari, F. & Peronato, G. & Sadeghian, P. & Zhao, X. & Widén, J., 2020. "Urban building energy modeling: State of the art and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    15. Martín Mosteiro-Romero & Arno Schlueter, 2021. "Effects of Occupants and Local Air Temperatures as Sources of Stochastic Uncertainty in District Energy System Modeling," Energies, MDPI, vol. 14(8), pages 1-30, April.
    16. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    17. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    18. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    20. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5931-:d:638453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.