IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019244.html
   My bibliography  Save this article

Integrated energy demand-supply modeling for low-carbon neighborhood planning

Author

Listed:
  • Vahid-Ghavidel, Morteza
  • Jafari, Mehdi
  • Letellier-Duchesne, Samuel
  • Berzolla, Zachary
  • Reinhart, Christoph
  • Botterud, Audun

Abstract

As the building stock is projected to double before the end of the half-century and the power grid is transitions to low-carbon resources, planning new construction hand in hand with the grid and its capacity is essential. This paper presents a method that combines urban building energy modeling and local planning of renewable energy sources (RES) using an optimization framework. The objective of this model is to minimize the investment and operational cost of meeting the energy needs of a group of buildings. The framework considers two urban-scale RES technologies, photovoltaic (PV) panels and small-scale wind turbines, alongside energy storage system (ESS) units that complement building demand in case of RES unavailability. The urban buildings are modeled abstractly as “shoeboxes” using the Urban Modeling Interface (umi) software. We tested the proposed framework on a real case study in a neighborhood in Chicago, Illinois, USA. The results include estimated building energy consumption, optimal capacity of the installed power supply resources, hourly operations, and corresponding energy costs for 2030. We also imposed different levels of CO2 emissions cuts. The results demonstrate that solar PV has the most prominent role in supplying local renewables to the neighborhood, with wind power making only a small contribution. Moreover, as we imposed different CO2 emissions caps, we found that ESS plays an increasingly important role at lower CO2 emissions levels. We can achieve a significant reduction in CO2 emissions with a limited increase in cost (75% emissions reduction at a 15% increase in overall energy costs). Overall, the results highlight the importance of modeling the interactions between building energy use and electricity system capacity expansion planning.

Suggested Citation

  • Vahid-Ghavidel, Morteza & Jafari, Mehdi & Letellier-Duchesne, Samuel & Berzolla, Zachary & Reinhart, Christoph & Botterud, Audun, 2024. "Integrated energy demand-supply modeling for low-carbon neighborhood planning," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019244
    DOI: 10.1016/j.apenergy.2023.122560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Jiachen & Jafari, Mehdi & Botterud, Audun, 2022. "Planning low-carbon distributed power systems: Evaluating the role of energy storage," Energy, Elsevier, vol. 238(PA).
    2. Ang, Yu Qian & Berzolla, Zachary Michael & Reinhart, Christoph F., 2020. "From concept to application: A review of use cases in urban building energy modeling," Applied Energy, Elsevier, vol. 279(C).
    3. Swaminathan, Siddharth & Pavlak, Gregory S. & Freihaut, James, 2020. "Sizing and dispatch of an islanded microgrid with energy flexible buildings," Applied Energy, Elsevier, vol. 276(C).
    4. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    5. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    6. Cerezo Davila, Carlos & Reinhart, Christoph F. & Bemis, Jamie L., 2016. "Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets," Energy, Elsevier, vol. 117(P1), pages 237-250.
    7. Dong, Bing & Li, Zhaoxuan & Taha, Ahmad & Gatsis, Nikolaos, 2018. "Occupancy-based buildings-to-grid integration framework for smart and connected communities," Applied Energy, Elsevier, vol. 219(C), pages 123-137.
    8. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    9. Kouridis, Ch & Vlachokostas, Ch, 2022. "Towards decarbonizing road transport: Environmental and social benefit of vehicle fleet electrification in urban areas of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Wei, Wu & Skye, Harrison M., 2021. "Residential net-zero energy buildings: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Johari, F. & Peronato, G. & Sadeghian, P. & Zhao, X. & Widén, J., 2020. "Urban building energy modeling: State of the art and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johari, F. & Lindberg, O. & Ramadhani, U.H. & Shadram, F. & Munkhammar, J. & Widén, J., 2024. "Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM," Applied Energy, Elsevier, vol. 361(C).
    2. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    3. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    4. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    5. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    6. Paolo Civiero & Jordi Pascual & Joaquim Arcas Abella & Ander Bilbao Figuero & Jaume Salom, 2021. "PEDRERA. Positive Energy District Renovation Model for Large Scale Actions," Energies, MDPI, vol. 14(10), pages 1-21, May.
    7. Yael Nidam & Ali Irani & Jamie Bemis & Christoph Reinhart, 2023. "Census-based urban building energy modeling to evaluate the effectiveness of retrofit programs," Environment and Planning B, , vol. 50(9), pages 2394-2406, November.
    8. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
    9. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    10. Ziyu Duan & Seiyong Kim, 2023. "Progress in Research on Net-Zero-Carbon Cities: A Literature Review and Knowledge Framework," Energies, MDPI, vol. 16(17), pages 1-27, August.
    11. Prataviera, Enrico & Zarrella, Angelo & Morejohn, Joshua & Narayanan, Vinod, 2024. "Exploiting district cooling network and urban building energy modeling for large-scale integrated energy conservation analyses," Applied Energy, Elsevier, vol. 356(C).
    12. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Niall Buckley & Gerald Mills & Samuel Letellier-Duchesne & Khadija Benis, 2021. "Designing an Energy-Resilient Neighbourhood Using an Urban Building Energy Model," Energies, MDPI, vol. 14(15), pages 1-17, July.
    14. Ang, Yu Qian & Berzolla, Zachary Michael & Reinhart, Christoph F., 2020. "From concept to application: A review of use cases in urban building energy modeling," Applied Energy, Elsevier, vol. 279(C).
    15. Ehsan Kamel, 2022. "A Systematic Literature Review of Physics-Based Urban Building Energy Modeling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation," Energies, MDPI, vol. 15(22), pages 1-24, November.
    16. Bass, Brett & New, Joshua & Clinton, Nicholas & Adams, Mark & Copeland, Bill & Amoo, Charles, 2022. "How close are urban scale building simulations to measured data? Examining bias derived from building metadata in urban building energy modeling," Applied Energy, Elsevier, vol. 327(C).
    17. Shen, Pengyuan & Wang, Huilong, 2024. "Archetype building energy modeling approaches and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    19. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    20. Despoina Antypa & Foteini Petrakli & Anastasia Gkika & Pamela Voigt & Alexander Kahnt & Robert Böhm & Jan Suchorzewski & Andreia Araújo & Susana Sousa & Elias P. Koumoulos, 2022. "Life Cycle Assessment of Advanced Building Components towards NZEBs," Sustainability, MDPI, vol. 14(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.