IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v125y2017icp716-725.html
   My bibliography  Save this article

Towards a prototype module for piezoelectric energy harvesting from raindrop impacts

Author

Listed:
  • Ilyas, Mohammad Adnan
  • Swingler, Jonathan

Abstract

It has been shown that scavenging energy from raindrop impacts has the potential as a power source for electronic devices and act as an alternative method of generating electrical power. In this paper an energy harvesting module is developed consisting of multiple piezoelectric devices which use impacts of raindrops to generate electrical power. The effect on efficiency of the module with non-rectified or rectified outputs of each device connected in parallel is investigated. Additionally, the voltage, power and energy were found for different surface angles, surface conditions and impact regions for single devices with a view to maximise module efficiency.

Suggested Citation

  • Ilyas, Mohammad Adnan & Swingler, Jonathan, 2017. "Towards a prototype module for piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 125(C), pages 716-725.
  • Handle: RePEc:eee:energy:v:125:y:2017:i:c:p:716-725
    DOI: 10.1016/j.energy.2017.02.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jin & Xuan, Yimin & Yang, Lili, 2014. "Performance estimation of photovoltaic–thermoelectric hybrid systems," Energy, Elsevier, vol. 78(C), pages 895-903.
    2. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2015. "Piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 90(P1), pages 796-806.
    3. Lele, Sharachchandra M., 1991. "Sustainable development: A critical review," World Development, Elsevier, vol. 19(6), pages 607-621, June.
    4. Ilkiliç, Cumali & Türkbay, Ismail, 2010. "Determination and utilization of wind energy potential for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2202-2207, October.
    5. Martins, F.R. & Abreu, S.L. & Pereira, E.B., 2012. "Scenarios for solar thermal energy applications in Brazil," Energy Policy, Elsevier, vol. 48(C), pages 640-649.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim, Alwathiqbellah & Hassan, Mostafa, 2023. "Extended bandwidth of 2DOF double impact triboelectric energy harvesting: Theoretical and experimental verification," Applied Energy, Elsevier, vol. 333(C).
    2. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    3. Shan, Xiaobiao & Li, Hongliang & Yang, Yuancai & Feng, Ju & Wang, Yicong & Xie, Tao, 2019. "Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration," Energy, Elsevier, vol. 172(C), pages 134-140.
    4. Sultana, Ayesha & Alam, Md. Mehebub & Ghosh, Sujoy Kumar & Middya, Tapas Ranjan & Mandal, Dipankar, 2019. "Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator," Energy, Elsevier, vol. 166(C), pages 963-971.
    5. Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
    6. Hao, Guannan & Dong, Xiangwei & Li, Zengliang, 2021. "A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies," Energy, Elsevier, vol. 232(C).
    7. Wijewardhana, K. Rohana & Ekanayaka, Thilini K. & Jayaweera, E.N. & Shahzad, Amir & Song, Jang-Kun, 2018. "Integration of multiple bubble motion active transducers for improving energy-harvesting efficiency," Energy, Elsevier, vol. 160(C), pages 648-653.
    8. Yar, Adem, 2021. "High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting," Energy, Elsevier, vol. 222(C).
    9. Cheng, Tinghai & Fu, Xianpeng & Liu, Wenbo & Lu, Xiaohui & Chen, Xiyan & Wang, Yingting & Bao, Gang, 2019. "Airfoil-based cantilevered polyvinylidene fluoride layer generator for translating amplified air-flow energy," Renewable Energy, Elsevier, vol. 135(C), pages 399-407.
    10. Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
    11. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
    12. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joowon Im, 2019. "Green Streets to Serve Urban Sustainability: Benefits and Typology," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    2. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    3. Toman, Michael & Pezzey, John C., 2002. "The Economics of Sustainability: A Review of Journal Articles," RFF Working Paper Series dp-02-03, Resources for the Future.
    4. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    5. A.B. Chhetri & G.R. Pokharel & M.R. Islam, 2009. "Sustainability of Micro-Hydrosystems — A Case Study," Energy & Environment, , vol. 20(4), pages 567-585, August.
    6. Nicos A. Scordis & Yoshihiko Suzawa & Astrid Zwick & Lucia Ruckner, 2014. "Principles for Sustainable Insurance: Risk Management and Value," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 17(2), pages 265-276, September.
    7. Aleksandra Pieloch-Babiarz & Anna Misztal & Magdalena Kowalska, 2021. "An impact of macroeconomic stabilization on the sustainable development of manufacturing enterprises: the case of Central and Eastern European Countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8669-8698, June.
    8. Dovers, Stephen R., 1995. "A framework for scaling and framing policy problems in sustainability," Ecological Economics, Elsevier, vol. 12(2), pages 93-106, February.
    9. T. R. Franks, 1996. "Managing Sustainable Development: Definitions, Paradigms, And Dimensions," Sustainable Development, John Wiley & Sons, Ltd., vol. 4(2), pages 53-60.
    10. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    11. Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.
    12. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    13. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    14. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    15. Jean-Marie Baland & François Libois & Dilip Mookherjee, 2018. "Forest Degradation and Economic Growth in Nepal, 2003–2010," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(2), pages 401-439.
    16. Cowell, Sarah J. & Wehrmeyer, Walter & Argust, Peter W. & Robertson, J. Graham S., 1999. "Sustainability and the primary extraction industries: theories and practice," Resources Policy, Elsevier, vol. 25(4), pages 277-286, December.
    17. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    18. Samira Sahebalzamani & Giovanna Bertella, 2018. "Business Models and Sustainability in Nature Tourism: A Systematic Review of the Literature," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    19. Faiza Manzoor & Longbao Wei & Muhammad Asif & Muhammad Zia ul Haq & Hafiz ur Rehman, 2019. "The Contribution of Sustainable Tourism to Economic Growth and Employment in Pakistan," IJERPH, MDPI, vol. 16(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:716-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.