IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p875-d269202.html
   My bibliography  Save this article

Hybrid Moth-Flame Optimization Algorithm and Incremental Conductance for Tracking Maximum Power of Solar PV/Thermoelectric System under Different Conditions

Author

Listed:
  • Hegazy Rezk

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al Kharj 11991, Saudi Arabia
    Electrical Engineering Dept., Faculty of Engineering, Minia University, Minya 61519, Egypt)

  • Ziad Mohammed Ali

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al Kharj 11991, Saudi Arabia
    Electrical Engineering Dept., Faculty of Engineering, Aswan University, Aswan Governorate 81528, Egypt)

  • Omer Abdalla

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al Kharj 11991, Saudi Arabia
    University of Medical Sciences & Technology, Khartoum 11111, Sudan)

  • Obai Younis

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al Kharj 11991, Saudi Arabia
    Mechanical Engineering Department, Faculty of Engineering, University of Khartoum, Al Khurtum 11111, Sudan)

  • Mohamed Ramadan Gomaa

    (Mechanical Department, Faculty of Engineering, Mu’tah University, Al-Karak 61710, Jordan
    Mechanical Department, Benha Faculty of Engineering, Benha University, Benha 13512, Egypt)

  • Mauia Hashim

    (Sudan Academy of Science, Khartoum 11111, Sudan)

Abstract

For an efficient energy harvesting by the PV/thermoelectric system, the maximum power point tracking (MPPT) principle is targeted, aiming to operate the system close to peak power point. Under a uniform distribution of the solar irradiance, there is only one maximum power point (MPP), which easily can be efficiently determined by any traditional MPPT method, such as the incremental conductance (INC). A different situation will occur for the non-uniform distribution of solar irradiance, where more than one MPP will exist on the power versus voltage plot of the PV/thermoelectric system. The determination of the global MPP cannot be achieved by conventional methods. To deal with this issue the application of soft computing techniques based on optimization algorithms is used. However, MPPT based on optimization algorithms is very tedious and time consuming, especially under normal conditions. To solve this dilemma, this research examines a hybrid MPPT method, consisting of an incremental conductance (INC) approach and a moth-flame optimizer (MFO), referred to as (INC-MFO) procedure, to reach high adaptability at different environmental conditions. In this way, the combination of the two different algorithms facilitates the utilization of the advantages of the two methods, thereby resulting in a faster speed tracking with uniform radiation distribution and a high accuracy in the case of a non-uniform distribution. It is very important to mention that the INC method is used to track the maximum power point under normal conditions, whereas the MFO optimizer is most relevant for the global search under partial shading. The obtained results revealed that the proposed strategy performed best in both of the dynamic and the steady-state conditions at uniform and non-uniform radiation.

Suggested Citation

  • Hegazy Rezk & Ziad Mohammed Ali & Omer Abdalla & Obai Younis & Mohamed Ramadan Gomaa & Mauia Hashim, 2019. "Hybrid Moth-Flame Optimization Algorithm and Incremental Conductance for Tracking Maximum Power of Solar PV/Thermoelectric System under Different Conditions," Mathematics, MDPI, vol. 7(10), pages 1-21, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:875-:d:269202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jin & Xuan, Yimin & Yang, Lili, 2014. "Performance estimation of photovoltaic–thermoelectric hybrid systems," Energy, Elsevier, vol. 78(C), pages 895-903.
    2. Rezk, Hegazy & Fathy, Ahmed & Abdelaziz, Almoataz Y., 2017. "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 377-386.
    3. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    4. Marmoush, Mohamed M. & Rezk, Hegazy & Shehata, Nabila & Henry, Jean & Gomaa, Mohamed R., 2018. "A novel merging Tubular Daylight Device with Solar Water Heater – Experimental study," Renewable Energy, Elsevier, vol. 125(C), pages 947-961.
    5. Mohamed, Mohamed A. & Zaki Diab, Ahmed A. & Rezk, Hegazy, 2019. "Partial shading mitigation of PV systems via different meta-heuristic techniques," Renewable Energy, Elsevier, vol. 130(C), pages 1159-1175.
    6. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed R. Gomaa & Talib K. Murtadha & Ahmad Abu-jrai & Hegazy Rezk & Moath A. Altarawneh & Abdullah Marashli, 2022. "Experimental Investigation on Waste Heat Recovery from a Cement Factory to Enhance Thermoelectric Generation," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    2. Haitham Alsaif & Shobhit K. Patel & Naim Ben Ali & Ammar Armghan & Khaled Aliqab, 2023. "Numerical Simulation and Structure Optimization of Multilayer Metamaterial Plus-Shaped Solar Absorber Design Based on Graphene and SiO 2 Substrate for Renewable Energy Generation," Mathematics, MDPI, vol. 11(2), pages 1-13, January.
    3. Fathy, Ahmed, 2023. "Efficient energy valley optimization approach for reconfiguring thermoelectric generator system under non-uniform heat distribution," Renewable Energy, Elsevier, vol. 217(C).
    4. Hegazy Rezk & Magdy M. Zaky & Mohemmed Alhaider & Mohamed A. Tolba, 2022. "Robust Fractional MPPT-Based Moth-Flame Optimization Algorithm for Thermoelectric Generation Applications," Energies, MDPI, vol. 15(23), pages 1-19, November.
    5. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    3. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    4. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    5. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    6. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    7. Jouda Arfaoui & Hegazy Rezk & Mujahed Al-Dhaifallah & Feki Elyes & Mami Abdelkader, 2019. "Numerical Performance Evaluation of Solar Photovoltaic Water Pumping System under Partial Shading Condition using Modern Optimization," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    8. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "One-day performance evaluation of photovoltaic-thermoelectric hybrid system," Energy, Elsevier, vol. 143(C), pages 337-346.
    9. Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
    10. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    11. Li, Dianhong & Xuan, Yimin & Li, Qiang & Hong, Hui, 2017. "Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems," Energy, Elsevier, vol. 126(C), pages 343-351.
    12. Huen, Priscilla & Daoud, Walid A., 2017. "Advances in hybrid solar photovoltaic and thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1295-1302.
    13. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    14. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    15. Alaaeddin, M.H. & Sapuan, S.M. & Zuhri, M.Y.M. & Zainudin, E.S. & AL- Oqla, Faris M., 2019. "Photovoltaic applications: Status and manufacturing prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 318-332.
    16. Shittu, Samson & Li, Guiqiang & Tang, Xin & Zhao, Xudong & Ma, Xiaoli & Badiei, Ali, 2020. "Analysis of thermoelectric geometry in a concentrated photovoltaic-thermoelectric under varying weather conditions," Energy, Elsevier, vol. 202(C).
    17. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    18. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    19. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    20. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:875-:d:269202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.