IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i8p2202-2207.html
   My bibliography  Save this article

Determination and utilization of wind energy potential for Turkey

Author

Listed:
  • Ilkiliç, Cumali
  • Türkbay, Ismail

Abstract

In this study, potential and development of wind energy systems in Turkey were studied. The potential and current usage was reviewed. The objective of the study is to investigate the wind energy plants and projects in Turkey. The wind energy potential of various regions and the exploitation of the wind energy were investigated by analyzing wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2004. NurdagI, Karabiga, Datça, BandIrma, Antakya, Mardin, and Kumköy areas were found to be the most suitable areas for wind energy systems by their wind densities; Sinop, Gökçeada, and Siverek are following these areas. The results indicate that the investigated sites have fairly satisfactory wind energy potential for the utilization.

Suggested Citation

  • Ilkiliç, Cumali & Türkbay, Ismail, 2010. "Determination and utilization of wind energy potential for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2202-2207, October.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2202-2207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00095-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hepbasli, Arif & Ozgener, Onder, 2004. "A review on the development of wind energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 257-276, June.
    2. Lund, Henrik, 2006. "The Kyoto mechanisms and technological innovation," Energy, Elsevier, vol. 31(13), pages 2325-2332.
    3. Ackermann, Thomas & Söder, Lennart, 2002. "An overview of wind energy-status 2002," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 67-127.
    4. El Chazly, N.M., 1993. "Static and dynamic analysis of wind turbine blades using the finite element method," Renewable Energy, Elsevier, vol. 3(6), pages 705-724.
    5. Clarke, Alexi, 1991. "Wind energy progress and potential," Energy Policy, Elsevier, vol. 19(8), pages 742-755, October.
    6. Alboyaci, Bora & Dursun, Bahtiyar, 2008. "Electricity restructuring in Turkey and the share of wind energy production," Renewable Energy, Elsevier, vol. 33(11), pages 2499-2505.
    7. Sesto, Ezio, 1999. "Wind energy in the world: Reality and prospects," Renewable Energy, Elsevier, vol. 16(1), pages 888-893.
    8. Balat, Havva, 2008. "Contribution of green energy sources to electrical power production of Turkey: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1652-1666, August.
    9. Duic, N. & Alves, L. M. & Chen, F. & da Graça Carvalho, M., 2003. "Potential of Kyoto Protocol Clean Development Mechanism in transfer of clean energy technologies to Small Island Developing States: case study of Cape Verde," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(1), pages 83-98, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masseran, N. & Razali, A.M. & Ibrahim, K. & Wan Zin, W.Z., 2012. "Evaluating the wind speed persistence for several wind stations in Peninsular Malaysia," Energy, Elsevier, vol. 37(1), pages 649-656.
    2. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    3. Ozan Akdağ & Celaleddin Yeroglu, 2020. "An evaluation of an offshore energy installation for the Black Sea region of Turkey and the effects on a regional decrease in greenhouse gas emissions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 531-544, June.
    4. Howlader, Abdul Motin & Urasaki, Naomitsu & Yona, Atsushi & Senjyu, Tomonobu & Saber, Ahmed Yousuf, 2013. "A review of output power smoothing methods for wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 135-146.
    5. Yaniktepe, B. & Koroglu, T. & Savrun, M.M., 2013. "Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 703-711.
    6. Lamsal, Dipesh & Sreeram, Victor & Mishra, Yateendra & Kumar, Deepak, 2019. "Output power smoothing control approaches for wind and photovoltaic generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Genç, Mustafa Serdar & Çelik, Muhammet & Karasu, İlyas, 2012. "A review on wind energy and wind–hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6631-6646.
    8. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    9. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2017. "Towards a prototype module for piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 125(C), pages 716-725.
    10. Ertürk, Mehmet, 2012. "The evaluation of feed-in tariff regulation of Turkey for onshore wind energy based on the economic analysis," Energy Policy, Elsevier, vol. 45(C), pages 359-367.
    11. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    12. Dursun, Bahtiyar & Gokcol, Cihan, 2014. "Impacts of the renewable energy law on the developments of wind energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 318-325.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İlkiliç, Cumali, 2012. "Wind energy and assessment of wind energy potential in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1165-1173.
    2. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.
    3. IlkIlIç, Cumali & AydIn, Hüseyin & Behçet, Rasim, 2011. "The current status of wind energy in Turkey and in the world," Energy Policy, Elsevier, vol. 39(2), pages 961-967, February.
    4. Howlader, Abdul Motin & Urasaki, Naomitsu & Yona, Atsushi & Senjyu, Tomonobu & Saber, Ahmed Yousuf, 2013. "A review of output power smoothing methods for wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 135-146.
    5. Keleş, S. & Bilgen, S., 2012. "Renewable energy sources in Turkey for climate change mitigation and energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5199-5206.
    6. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    7. Dursun, Bahtiyar & Alboyaci, Bora, 2010. "The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1979-1988, September.
    8. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    9. Kotcioğlu, İ., 2011. "Clean and sustainable energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5111-5119.
    10. Kaygusuz, Kamil, 2010. "Wind energy status in renewable electrical energy production in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2104-2112, September.
    11. Dursun, Bahtiyar & Gokcol, Cihan, 2014. "Impacts of the renewable energy law on the developments of wind energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 318-325.
    12. Ozgener, Onder, 2005. "A review of blade structures of SWTSs in the Aegean region and performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 85-99, February.
    13. Erdem, Z. Bengü, 2010. "The contribution of renewable resources in meeting Turkey's energy-related challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2710-2722, December.
    14. Ertürk, Mehmet, 2012. "The evaluation of feed-in tariff regulation of Turkey for onshore wind energy based on the economic analysis," Energy Policy, Elsevier, vol. 45(C), pages 359-367.
    15. Suzer, Ahmet Esat & Atasoy, Vehbi Emrah & Ekici, Selcuk, 2021. "Developing a holistic simulation approach for parametric techno-economic analysis of wind energy," Energy Policy, Elsevier, vol. 149(C).
    16. Islam, M.R. & Mekhilef, S. & Saidur, R., 2013. "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 456-468.
    17. Eskin, N. & Artar, H. & Tolun, S., 2008. "Wind energy potential of Gökçeada Island in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 839-851, April.
    18. Valentine, Scott Victor, 2011. "Understanding the variability of wind power costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3632-3639.
    19. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    20. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2202-2207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.