IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v124y2017icp502-509.html
   My bibliography  Save this article

A statistical approach to the analysis of the surge phenomenon

Author

Listed:
  • Bontempo, R.
  • Cardone, M.
  • Manna, M.
  • Vorraro, G.

Abstract

The paper presents an innovative data processing methodology for the analysis of the surge phenomenon occurring in a compressor. Since the dynamic of the surge cycle does not have a deterministic character, its proper description can only be obtained through a statistical approach. To this aim, the temporally resolved traces of the pressure and mass flow rate signals are processed through a phase averaged decomposition technique. Furthermore, the shape of the oscillating surge cycle is detected and quantified by introducing the joint probability density function of the aforementioned signals which are reported in the pressure ratio versus mass flow rate plane. This probabilistic approach offers two significant advantages over the conventional deterministic approach, namely the possibility to quantify the time of residence of all individual unstable states in a statistical sense, as well as the possibility to carry out a proper code-to-experiments or experiments-to-experiments comparison of such an unstable phenomenon.

Suggested Citation

  • Bontempo, R. & Cardone, M. & Manna, M. & Vorraro, G., 2017. "A statistical approach to the analysis of the surge phenomenon," Energy, Elsevier, vol. 124(C), pages 502-509.
  • Handle: RePEc:eee:energy:v:124:y:2017:i:c:p:502-509
    DOI: 10.1016/j.energy.2017.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Kui & Sun, Harold & Li, Xianguo & Wu, Hao & Krivitzky, Eric & Schram, Tim & Larosiliere, Louis M., 2009. "Numerical simulation of air flow through turbocharger compressors with dual volute design," Applied Energy, Elsevier, vol. 86(11), pages 2494-2506, November.
    2. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    3. Galindo, J. & Fajardo, P. & Navarro, R. & García-Cuevas, L.M., 2013. "Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling," Applied Energy, Elsevier, vol. 103(C), pages 116-127.
    4. Fu, Jianqin & Liu, Jingping & Wang, Yong & Deng, Banglin & Yang, Yanping & Feng, Renhua & Yang, Jing, 2014. "A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery," Applied Energy, Elsevier, vol. 113(C), pages 248-257.
    5. Arcaklioglu, Erol & Çelikten, Ismet, 2005. "A diesel engine's performance and exhaust emissions," Applied Energy, Elsevier, vol. 80(1), pages 11-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Bellis, Vincenzo & Bontempo, Rodolfo, 2018. "Development and validation of a 1D model for turbocharger compressors under deep-surge operation," Energy, Elsevier, vol. 142(C), pages 507-517.
    2. Powers, Katherine & Kennedy, Ian & Archer, Jamie & Eynon, Paul & Horsley, John & Brace, Chris & Copeland, Colin & Milewski, Paul, 2022. "A new first-principles model to predict mild and deep surge for a centrifugal compressor," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galindo, J. & Fajardo, P. & Navarro, R. & García-Cuevas, L.M., 2013. "Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling," Applied Energy, Elsevier, vol. 103(C), pages 116-127.
    2. José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
    3. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    4. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    5. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    6. Kim, Jun-Soo & Choi, Jae-Hyuk, 2023. "Feasibility study on bio-heavy fuel as an alternative for marine fuel," Renewable Energy, Elsevier, vol. 219(P2).
    7. Tian, Zhen-Yu & Chafik, Tarik & Assebban, Mhamed & Harti, Sanae & Bahlawane, Naoufal & Mountapmbeme Kouotou, Patrick & Kohse-Höinghaus, Katharina, 2013. "Towards biofuel combustion with an easily extruded clay as a natural catalyst," Applied Energy, Elsevier, vol. 107(C), pages 149-156.
    8. Tregenza, Owen & Olshina, Noam & Hield, Peter & Manzie, Chris & Hulston, Chris, 2022. "A comparison of turbine mass flow models based on pragmatic identification data sets for turbogenerator model development," Energy, Elsevier, vol. 247(C).
    9. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    10. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    11. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    12. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    13. Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Design of a novel axial impeller as a part of counter-rotating axial compressor to compress water vapor as refrigerant," Applied Energy, Elsevier, vol. 88(9), pages 3156-3168.
    14. Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
    15. Ng, Hoon Kiat & Gan, Suyin & Ng, Jo-Han & Pang, Kar Mun, 2013. "Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism," Applied Energy, Elsevier, vol. 102(C), pages 1275-1287.
    16. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    18. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    19. Mohd Muqeem & Ahmad Faizan Sherwani & Mukhtar Ahmad & Zahid Akhtar Khan, 2018. "Optimization of diesel engine input parameters for reducing hydrocarbon emission and smoke opacity using Taguchi method and analysis of variance," Energy & Environment, , vol. 29(3), pages 410-431, May.
    20. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:124:y:2017:i:c:p:502-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.