IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544221032990.html
   My bibliography  Save this article

A new first-principles model to predict mild and deep surge for a centrifugal compressor

Author

Listed:
  • Powers, Katherine
  • Kennedy, Ian
  • Archer, Jamie
  • Eynon, Paul
  • Horsley, John
  • Brace, Chris
  • Copeland, Colin
  • Milewski, Paul

Abstract

Centrifugal compressors are used in many applications, including automotive turbochargers. Surge is an instability that occurs at low mass flow rates that is often damaging. Even mild surge produces noise characteristics that cause problems with customer acceptance. It is therefore important to be able to predict both mild and deep surge onset.

Suggested Citation

  • Powers, Katherine & Kennedy, Ian & Archer, Jamie & Eynon, Paul & Horsley, John & Brace, Chris & Copeland, Colin & Milewski, Paul, 2022. "A new first-principles model to predict mild and deep surge for a centrifugal compressor," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544221032990
    DOI: 10.1016/j.energy.2021.123050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Filip Grapow & Grzegorz Liśkiewicz, 2020. "Study of the Greitzer Model for Centrifugal Compressors: Variable L c Parameter and Two Types of Surge," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Bontempo, R. & Cardone, M. & Manna, M. & Vorraro, G., 2017. "A statistical approach to the analysis of the surge phenomenon," Energy, Elsevier, vol. 124(C), pages 502-509.
    3. Semlitsch, Bernhard & Mihăescu, Mihai, 2016. "Flow phenomena leading to surge in a centrifugal compressor," Energy, Elsevier, vol. 103(C), pages 572-587.
    4. De Bellis, Vincenzo & Bontempo, Rodolfo, 2018. "Development and validation of a 1D model for turbocharger compressors under deep-surge operation," Energy, Elsevier, vol. 142(C), pages 507-517.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    2. Fu, Jianqin & Wang, Huailin & Sun, Xilei & Bao, Huanhuan & Wang, Xun & Liu, Jingping, 2024. "Multi-objective optimization for impeller structure parameters of fuel cell air compressor using linear-based boosting model and reference vector guided evolutionary algorithm," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Jixiang Chen & Zhitao Zuo & Xin Zhou & Jianting Sun & Jingxin Li & Wenbin Guo & Haisheng Chen, 2023. "Study on the Influence of Radial Inlet Chamber Splitter Blades on the Oblique Flow Compressor Performance," Energies, MDPI, vol. 16(11), pages 1-21, May.
    3. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    4. Shuai Li & Yan Liu & Mohammad Omidi & Chuang Zhang & Hongkun Li, 2021. "Numerical Investigation of Transient Flow Characteristics in a Centrifugal Compressor Stage with Variable Inlet Guide Vanes at Low Mass Flow Rates," Energies, MDPI, vol. 14(23), pages 1-18, November.
    5. De Bellis, Vincenzo & Bontempo, Rodolfo, 2018. "Development and validation of a 1D model for turbocharger compressors under deep-surge operation," Energy, Elsevier, vol. 142(C), pages 507-517.
    6. Aryana, Babak, 2016. "New version of DEA compressor for a novel hybrid gas turbine cycle: TurboDEA," Energy, Elsevier, vol. 111(C), pages 676-690.
    7. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    8. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    9. Grzegorz Liśkiewicz & Kirill Kabalyk & Andrzej Jaeschke & Filip Grapow & Michał Kulak & Mateusz Stajuda & Władysław Kryłłowicz, 2020. "Unstable Flow Structures Present at Different Rotational Velocities of the Centrifugal Compressor," Energies, MDPI, vol. 13(16), pages 1-19, August.
    10. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    11. Zhou, Xia & Zhang, Hanwei & Fang, Song & Rong, Yangyiming & Xu, Zhuoren & Jiang, Hanying & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2022. "Off-design performance analysis with various operation methods for ORC-based compression heat recovery system in cryogenic air separation units," Energy, Elsevier, vol. 261(PB).
    12. Zhou, Xia & Zhang, Hanwei & Rong, Yangyiming & Song, Jian & Fang, Song & Xu, Zhuoren & Zhi, Xiaoqin & Wang, Kai & Qiu, Limin & Markides, Christos N., 2022. "Comparative study for air compression heat recovery based on organic Rankine cycle (ORC) in cryogenic air separation units," Energy, Elsevier, vol. 255(C).
    13. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Proper orthogonal decomposition for energy convergence of shock waves under severe knock," Energy, Elsevier, vol. 128(C), pages 813-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544221032990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.