IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp570-578.html
   My bibliography  Save this article

Sensitivity analysis and multi-objective optimization of CO2CPU process using response surface methodology

Author

Listed:
  • Koohestanian, Esmaeil
  • Samimi, Abdolreza
  • Mohebbi-Kalhori, Davod
  • Sadeghi, Jafar

Abstract

Compression and purification unit (CPU) is a common industrial process for capturing CO2 from oxy-fuel combustion where high energy requirement is one of its disadvantages. This study focuses on analyzing of the sensitivity and optimizing multi-objectively the operating conditions of CPU, using response surface methodology (RSM). The main objective was to increase the efficiency of CO2 removal from the oxy-fuel combustion power plant. Statistical analysis reveals that reducing the first separator temperature, not only, plays a major role in CO2 separation, but also, it decreases the total work and heat duty of the process. It was found that the optimal multi-stage CO2 compressor discharge pressure was 25.34 bar while regular pressure for this process was reported as 30 bar. Furthermore, the optimal flue gas temperature before, between and after compression, and the first and second flash separator temperatures were 20 °C, 20 °C, 20.6 °C, −38.2 °C, and −55 °C, respectively. with the previous works carried out in a constant amount of CO2 separation, the proposed process leads to lower pressure, and therefore lower operating and capital costs.

Suggested Citation

  • Koohestanian, Esmaeil & Samimi, Abdolreza & Mohebbi-Kalhori, Davod & Sadeghi, Jafar, 2017. "Sensitivity analysis and multi-objective optimization of CO2CPU process using response surface methodology," Energy, Elsevier, vol. 122(C), pages 570-578.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:570-578
    DOI: 10.1016/j.energy.2017.01.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Bo & Zhao, Haibo & Zheng, Chuguang, 2015. "Optimization and control for CO2 compression and purification unit in oxy-combustion power plants," Energy, Elsevier, vol. 83(C), pages 416-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koohestanian, Esmaeil & Sadeghi, Jafar & Mohebbi-Kalhori, Davod & Shahraki, Farhad & Samimi, Abdolreza, 2018. "A novel process for CO2 capture from the flue gases to produce urea and ammonia," Energy, Elsevier, vol. 144(C), pages 279-285.
    2. Allahyarzadeh-Bidgoli, Ali & Yanagihara, Jurandir Itizo, 2023. "Energy efficiency, sustainability, and operating cost optimization of an FPSO with CCUS: An innovation in CO2 compression and injection systems," Energy, Elsevier, vol. 267(C).
    3. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    2. Jin, Bo & Zhao, Haibo & Zheng, Chuguang & Liang, Zhiwu, 2018. "Control optimization to achieve energy-efficient operation of the air separation unit in oxy-fuel combustion power plants," Energy, Elsevier, vol. 152(C), pages 313-321.
    3. Wawrzyńczak, Dariusz & Panowski, Marcin & Majchrzak-Kucęba, Izabela, 2019. "Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon," Energy, Elsevier, vol. 180(C), pages 787-796.
    4. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
    5. Costa, Alexis & Coppitters, Diederik & Dubois, Lionel & Contino, Francesco & Thomas, Diane & De Weireld, Guy, 2024. "Energy, exergy, economic and environmental (4E) analysis of a cryogenic carbon purification unit with membrane for oxyfuel cement plant flue gas," Applied Energy, Elsevier, vol. 357(C).
    6. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    7. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    8. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    9. Wu, Hai-bo & Xu, Ming-xin & Li, Yan-bing & Wu, Jin-hua & Shen, Jian-chong & Liao, Haiyan, 2020. "Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion," Applied Energy, Elsevier, vol. 259(C).
    10. Koohestanian, Esmaeil & Sadeghi, Jafar & Mohebbi-Kalhori, Davod & Shahraki, Farhad & Samimi, Abdolreza, 2018. "A novel process for CO2 capture from the flue gases to produce urea and ammonia," Energy, Elsevier, vol. 144(C), pages 279-285.
    11. Kim, Taewoo & Park, So Dam & Lee, Uen Do & Park, Byeong Cheol & Park, Kyoung Il & Hong, Jongsup, 2021. "Thermodynamic analysis of the 2nd generation pressurized fluidized-bed combustion cycle utilizing an oxy-coal boiler and a gasifier," Energy, Elsevier, vol. 236(C).
    12. Jin, Bo & Yao, Wenxing & Liu, Kaile & Lu, Shijian & Luo, Xiao & Liang, Zhiwu, 2022. "Self-optimizing control and safety assessment to achieve economic and safe operation for oxy-fuel combustion boiler island systems," Applied Energy, Elsevier, vol. 323(C).
    13. Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Khoi, Nguyen Hoang & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2019. "Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 166(C), pages 183-192.
    14. Zhao, Zhigang & Su, Sheng & Si, Ningning & Hu, Song & Wang, Yi & Xu, Jun & Jiang, Long & Chen, Gang & Xiang, Jun, 2017. "Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant," Energy, Elsevier, vol. 119(C), pages 540-548.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:570-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.