IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp431-440.html
   My bibliography  Save this article

Performance characteristics of a horizontal axis turbine with fusion winglet

Author

Listed:
  • Zhu, Bing
  • Sun, Xiaojing
  • Wang, Ying
  • Huang, Diangui

Abstract

Any technique or method that can improve the efficiency in exploiting renewable wind or marine current energy has got a great significance today. It has been reported that adding a winglet at the tip of the rotor blades on a horizontal axis wind turbine can increase its power performance. The purpose of this paper is to adopt a numerical method to investigate the effects of different winglet configurations on turbine performance, especially focusing on the direction for the winglet tip to point towards (the suction side, pressure side or both sides of the main blade). The results show that the new design of an integrated fusion winglet proposed in this paper can generally improve the main blade's power producing ability, which is further enhanced with the increase of turbine's tip speed ratio with a maximum power augmentation of about 3.96%. No matter which direction the winglet tip faces, the installation angle of the winglet should match well with the real angle of incoming flow. As a whole, the turbine with winglet of two tips facing to both sides of the main blade can produce much more power than the one of winglet configuration whose tip faces only one side for different blade hub pitch angles and vast majority of tip speed ratios. The working principle behind the winglet in improving turbine performance may be that it can block the downwash fluid easily flowing around the tip section of the main blade from the pressure side to suction side, and hence diffuse and spread out the tip vortex. As a result, it finally decreases the energy loss. Besides, the relative projected rotor area in incoming flow direction will also be reduced due to the addition of the winglet, which is also helpful to turbine's power coefficient.

Suggested Citation

  • Zhu, Bing & Sun, Xiaojing & Wang, Ying & Huang, Diangui, 2017. "Performance characteristics of a horizontal axis turbine with fusion winglet," Energy, Elsevier, vol. 120(C), pages 431-440.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:431-440
    DOI: 10.1016/j.energy.2016.11.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216317339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    2. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    3. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedighi, Hamed & Akbarzadeh, Pooria & Salavatipour, Ali, 2020. "Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation," Energy, Elsevier, vol. 195(C).
    2. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    3. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    4. Barbarić, Marina & Batistić, Ivan & Guzović, Zvonimir, 2022. "Numerical study of the flow field around hydrokinetic turbines with winglets on the blades," Renewable Energy, Elsevier, vol. 192(C), pages 692-704.
    5. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
    6. Zhang, Zhihao & Kuang, Limin & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan & Duan, Lei & Tu, Jiahuang & Chen, Yaoran & Chen, Mingsheng, 2023. "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, Elsevier, vol. 281(C).
    7. Santiago Laín & Manuel A. Taborda & Omar D. López, 2018. "Numerical Study of the Effect of Winglets on the Performance of a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 11(2), pages 1-24, January.
    8. Olvera-Trejo, Rodolfo & Myers, Luke & Blunden, Luke & Bahaj, AbuBakr S., 2024. "An experimental study of the thrust and power produced by a 1/20th scale tidal turbine utilising blade winglets," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
    2. Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
    3. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    4. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    5. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    6. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    7. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    8. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    9. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    10. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    11. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    12. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    13. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    14. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    15. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    16. Liu, Pengfei & Veitch, Brian, 2012. "Design and optimization for strength and integrity of tidal turbine rotor blades," Energy, Elsevier, vol. 46(1), pages 393-404.
    17. Baisthakur, Shubham & Fitzgerald, Breiffni, 2024. "Physics-Informed Neural Network surrogate model for bypassing Blade Element Momentum theory in wind turbine aerodynamic load estimation," Renewable Energy, Elsevier, vol. 224(C).
    18. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    19. Kim, Seung-Jun & Singh, Patrick Mark & Hyun, Beom-Soo & Lee, Young-Ho & Choi, Young-Do, 2017. "A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea," Renewable Energy, Elsevier, vol. 112(C), pages 35-43.
    20. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel," Renewable Energy, Elsevier, vol. 131(C), pages 1300-1317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:431-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.