Flexible free-standing ternary CoSnO3/graphene/carbon nanotubes composite papers as anodes for enhanced performance of lithium-ion batteries
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.12.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wenelska, K. & Ottmann, A. & Schneider, P. & Thauer, E. & Klingeler, R. & Mijowska, E., 2016. "Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries," Energy, Elsevier, vol. 103(C), pages 100-106.
- Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
- Pang, Haidong & Yang, Zunxian & Lv, Jun & Yan, Wenhuan & Guo, Tailiang, 2014. "Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries," Energy, Elsevier, vol. 69(C), pages 392-398.
- Bai, Hongwei & Liu, Zhaoyang & Sun, Darren Delai & Chan, Siew Hwa, 2014. "Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries," Energy, Elsevier, vol. 76(C), pages 607-613.
- Yang, Zunxian & Meng, Qing & Yan, Wenhuan & Lv, Jun & Guo, Zaiping & Yu, Xuebin & Chen, Zhixin & Guo, Tailiang & Zeng, Rong, 2015. "Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application," Energy, Elsevier, vol. 82(C), pages 960-967.
- Park, Seung-Keun & Seong, Chae-Yong & Yoo, Suyeon & Piao, Yuanzhe, 2016. "Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery," Energy, Elsevier, vol. 99(C), pages 266-273.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Yaqin & Wang, Feiyue & Fan, Zhupu & Wang, Zihang & Yang, Wenying & Ju, Wenqin & Lei, Weixin & Zou, Youlan & Ma, Zengsheng, 2022. "Internally enhanced conductive 3D porous hierarchical biochar framework for lithium sulfur battery," Energy, Elsevier, vol. 255(C).
- Wang, Mingyue & Huang, Ying & Wang, Ke & Zhu, Yade & Zhang, Na & Zhang, Hongming & Li, Suping & Feng, Zhenhe, 2018. "PVD synthesis of binder-free silicon and carbon coated 3D α-Fe2O3 nanorods hybrid films as high-capacity and long-life anode for flexible lithium-ion batteries," Energy, Elsevier, vol. 164(C), pages 1021-1029.
- Tang, Hong & Jiang, Mengjin & Ren, Erhui & Zhang, Yue & Lai, Xiaoxu & Cui, Ce & Jiang, Shouxiang & Zhou, Mi & Qin, Qin & Guo, Ronghui, 2020. "Integrate electrical conductivity and Li+ ion mobility into hierarchical heterostructure Ti3C2@CoO/ZnO composites toward high-performance lithium ion storage," Energy, Elsevier, vol. 212(C).
- Tan Thong, Pham & Sadhasivam, T. & Kim, Nam-In & Kim, Yoong Ahm & Roh, Sung-Hee & Jung, Ho-Young, 2021. "Highly conductive current collector for enhancing conductivity and power supply of flexible thin-film Zn–MnO2 battery," Energy, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Park, Seung-Keun & Seong, Chae-Yong & Yoo, Suyeon & Piao, Yuanzhe, 2016. "Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery," Energy, Elsevier, vol. 99(C), pages 266-273.
- Wang, Mingyue & Huang, Ying & Wang, Ke & Zhu, Yade & Zhang, Na & Zhang, Hongming & Li, Suping & Feng, Zhenhe, 2018. "PVD synthesis of binder-free silicon and carbon coated 3D α-Fe2O3 nanorods hybrid films as high-capacity and long-life anode for flexible lithium-ion batteries," Energy, Elsevier, vol. 164(C), pages 1021-1029.
- Thauer, Elisa & Shi, Xiaoze & Zhang, Shuai & Chen, Xuecheng & Deeg, Lukas & Klingeler, Rüdiger & Wenelska, Karolina & Mijowska, Ewa, 2021. "Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance," Energy, Elsevier, vol. 217(C).
- Wang, Shaofeng & Zhu, Yanping & Xu, Xiaomin & Sunarso, Jaka & Shao, Zongping, 2017. "Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries," Energy, Elsevier, vol. 125(C), pages 569-575.
- Kim, Hong-Ki & Lee, Seung-Hwan, 2016. "Enhanced electrochemical performances of cylindrical hybrid supercapacitors using activated carbon/ Li4-xMxTi5-yNyO12 (M=Na, N=V, Mn) electrodes," Energy, Elsevier, vol. 109(C), pages 506-511.
- Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
- Wang, Hongqiang & Li, Sha & Li, Dan & Chen, Zhixin & Liu, Hua Kun & Guo, Zaiping, 2014. "TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries," Energy, Elsevier, vol. 75(C), pages 597-602.
- Yang, Zunxian & Meng, Qing & Yan, Wenhuan & Lv, Jun & Guo, Zaiping & Yu, Xuebin & Chen, Zhixin & Guo, Tailiang & Zeng, Rong, 2015. "Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application," Energy, Elsevier, vol. 82(C), pages 960-967.
- Jiang, Zhibin & Chen, Ling & Zhang, Wenguang & Chen, Shiyu & Jian, Xiying & Liu, Xiang & Chen, Hongyu & Guo, Chunlei & Li, Weishan, 2021. "Sandwich-like NOCC@S8/rGO composite as cathode for high energy lithium-sulfur batteries," Energy, Elsevier, vol. 220(C).
- Jin, En Mei & Kim, Min Soo & Kim, Tae Yun & Shin, Beom-Ju & Moon, Jong-Ho & Jeong, Sang Mun, 2023. "Upcycling of silicon scrap collected from photovoltaic cell manufacturing process for lithium-ion batteries via transferred arc thermal plasma," Energy, Elsevier, vol. 262(PB).
- Inamdar, A.I. & Jo, Y. & Kim, J. & Han, J. & Pawar, S.M. & Kalubarme, R.S. & Park, C.J. & Hong, J.P. & Park, Y.S. & Jung, W. & Kim, H. & Im, Hyunsik, 2015. "Synthesis and enhanced electrochemical supercapacitive properties of manganese oxide nanoflake electrodes," Energy, Elsevier, vol. 83(C), pages 532-538.
- Dohyeong Seok & Yohan Jeong & Kyoungho Han & Do Young Yoon & Hiesang Sohn, 2019. "Recent Progress of Electrochemical Energy Devices: Metal Oxide–Carbon Nanocomposites as Materials for Next-Generation Chemical Storage for Renewable Energy," Sustainability, MDPI, vol. 11(13), pages 1-34, July.
- Fan, Guodong & Li, Xiaoyu & Zhang, Ruigang, 2021. "Global Sensitivity Analysis on Temperature-Dependent Parameters of A Reduced-Order Electrochemical Model And Robust State-of-Charge Estimation at Different Temperatures," Energy, Elsevier, vol. 223(C).
- Alami, Abdul Hai & Rajab, Bilal & Aokal, Kamilia, 2017. "Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications," Energy, Elsevier, vol. 139(C), pages 1231-1236.
- Shao, Zhou & Li, Hongji & Li, Mingji & Li, Cuiping & Qu, Changqing & Yang, Baohe, 2015. "Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors," Energy, Elsevier, vol. 87(C), pages 578-585.
- Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2015. "Performance comparison of four lithium–ion battery technologies under calendar aging," Energy, Elsevier, vol. 84(C), pages 542-550.
More about this item
Keywords
Free-standing; CoSnO3; Graphene/carbon nanotubes; Composite papers; Anodes; Lithium-ion batteries;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:172-180. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.