A novel heat-driven thermoacoustic natural gas liquefaction system. Part I: Coupling between refrigerator and linear motor
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.06.022
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Haojie & Yu, Guoyao & Dai, Wei & Zhang, Limin & Luo, Ercang, 2022. "Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system," Applied Energy, Elsevier, vol. 322(C).
- Saechan, Patcharin & Jaworski, Artur J., 2019. "Numerical studies of co-axial travelling-wave thermoacoustic cooler powered by standing-wave thermoacoustic engine," Renewable Energy, Elsevier, vol. 139(C), pages 600-610.
- Li, Xiaowei & Liu, Bin & Yu, Guoyao & Dai, Wei & Hu, Jianying & Luo, Ercang & Li, Haibing, 2017. "Experimental validation and numeric optimization of a resonance tube-coupled duplex Stirling cooler," Applied Energy, Elsevier, vol. 207(C), pages 604-612.
- Ahmed Hamood & Artur J. Jaworski & Xiaoan Mao, 2019. "Development and Assessment of Two-Stage Thermoacoustic Electricity Generator," Energies, MDPI, vol. 12(9), pages 1-18, May.
- Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
- Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
- Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
- Hu, Yiwei & Xu, Jingyuan & Zhao, Dan & Yang, Rui & Hu, Jianying & Luo, Ercang, 2024. "Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat," Applied Energy, Elsevier, vol. 361(C).
- Tang, K. & Feng, Y. & Jin, S.H. & Jin, T. & Li, M., 2015. "Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 148(C), pages 305-313.
- Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
- Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
- Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
- Wang, Kai & Sun, Daming & Xu, Ya & Zou, Jiang & Zhang, Xiaobin & Qiu, Limin, 2014. "Operating characteristics of thermoacoustic compression based on alternating to direct gas flow conversion," Energy, Elsevier, vol. 75(C), pages 338-348.
- Wang, Kaixin & Hu, Zhan-Chao, 2023. "Experimental investigation of a novel standing-wave thermoacoustic engine based on PCHE and supercritical CO2," Energy, Elsevier, vol. 282(C).
- Taleb, Aly I. & Timmer, Michael A.G. & El-Shazly, Mohamed Y. & Samoilov, Aleksandr & Kirillov, Valeriy A. & Markides, Christos N., 2016. "A single-reciprocating-piston two-phase thermofluidic prime-mover," Energy, Elsevier, vol. 104(C), pages 250-265.
- Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
- Kang, Huifang & Cheng, Peng & Yu, Zhibin & Zheng, Hongfei, 2015. "A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators," Applied Energy, Elsevier, vol. 137(C), pages 9-17.
- Sun, D.M. & Wang, K. & Zhang, X.J. & Guo, Y.N. & Xu, Y. & Qiu, L.M., 2013. "A traveling-wave thermoacoustic electric generator with a variable electric R-C load," Applied Energy, Elsevier, vol. 106(C), pages 377-382.
- Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
- Callanan, J. & Nouh, M., 2019. "Optimal thermoacoustic energy extraction via temporal phase control and traveling wave generation," Applied Energy, Elsevier, vol. 241(C), pages 599-612.
- Hu, J.Y. & Luo, E.C. & Dai, W. & Zhang, L.M., 2017. "Parameter sensitivity analysis of duplex Stirling coolers," Applied Energy, Elsevier, vol. 190(C), pages 1039-1046.
- Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
- Yang, Rui & Wang, Junxiang & Wu, Zhanghua & Huang, Bangdou & Luo, Ercang, 2023. "Performance analysis of thermoacoustic plasma MHD generation," Energy, Elsevier, vol. 263(PA).
- Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
More about this item
Keywords
Heat-driven thermoacoustic Stirling refrigerator; Linear motor; Natural gas liquefaction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:523-529. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.