IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp775-782.html
   My bibliography  Save this article

Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product

Author

Listed:
  • Evcan, Ezgi
  • Tari, Canan

Abstract

Direct fermentation of cellulosic biomass to bioethanol has been very promising and hence attracted attention in recent years. In this study, bioethanol production from apple pomace hydrolysate (agro-industrial waste product) was investigated by coculturing Trichoderma harzianum, Aspergillus sojae and Saccharomyces cerevisiae using statistical approaches. Screening and optimization experiments were conducted in order to determine the significant factors and their optimum levels for maximum bioethanol production. Inoculation rates, aeration and agitation speed were considered as factor variables and bioethanol production as response variable. Highest bioethanol (EtOH) concentration and ethanol yield on total reducing sugar content (YP/S) were 8.748 g/L and 0.945 g/g, respectively. Optimum conditions were 6% (w/v) inoculation rates of T.harzianum and A.sojae, and 4% (v/v) inoculation rate of S.cerevisiae with vented aeration method and agitation speed of 200 rpm. To best of our knowledge to date, no reports are available in literature regarding the coculturing of T.harzianum, A.sojae and S.cerevisiae for bioethanol production. Therefore, this study will serve as a base line of initial studies in this field. The method can create a renewable alternative feedstock for fossil fuel production and suggest a feasible solution to multiple environmental problems simultaneously creating a sink for waste utilization.

Suggested Citation

  • Evcan, Ezgi & Tari, Canan, 2015. "Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product," Energy, Elsevier, vol. 88(C), pages 775-782.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:775-782
    DOI: 10.1016/j.energy.2015.05.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez-Rivera, Beatriz & Ortiz-Muñiz, Beningo & Gómez-Rodríguez, Javier & Cárdenas-Cágal, Angel & Domínguez González, José Manuel & Aguilar-Uscanga, Maria Guadalupe, 2015. "Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture," Renewable Energy, Elsevier, vol. 74(C), pages 399-405.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Ravi Kant Bhatia & Deepak Sakhuja & Shyam Mundhe & Abhishek Walia, 2020. "Renewable Energy Products through Bioremediation of Wastewater," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    3. Demiray, Ekin & Karatay, Sevgi Ertuğrul & Dönmez, Gönül, 2018. "Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis," Energy, Elsevier, vol. 159(C), pages 988-994.
    4. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    5. Naseeruddin, Shaik & Desai, Suseelendra & Venkateswar Rao, L., 2017. "Ethanol production from lignocellulosic substrate Prosopis juliflora," Renewable Energy, Elsevier, vol. 103(C), pages 701-707.
    6. H K, Narendra Kumar & N, Chandra Mohana & H C, Amrutha & D, Rakshith & B P, Harini & Satish, S., 2023. "Biomass conversion through optimization of cellulase from Chryseobacterium junjuense Bp17 and their utility in bioethanol production," Energy, Elsevier, vol. 283(C).
    7. Taghizadeh-Alisaraei, Ahmad & Hosseini, Seyyed Hasan & Ghobadian, Barat & Motevali, Ali, 2017. "Biofuel production from citrus wastes: A feasibility study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1100-1112.
    8. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perez, Caroline L. & Pereira, Laís P.R. da C. & Milessi, Thais S. & Sandri, Juliana P. & Demeke, Mekonnen & Foulquié-Moreno, Maria R. & Thevelein, Johan M. & Zangirolami, Teresa C., 2022. "Towards a practical industrial 2G ethanol production process based on immobilized recombinant S. cerevisiae: Medium and strain selection for robust integrated fixed-bed reactor operation," Renewable Energy, Elsevier, vol. 185(C), pages 363-375.
    2. Pandey, Ajay Kumar & Kumar, Mohit & Kumari, Sonam & Gaur, Naseem A., 2022. "Integration of acid pre-treated paddy straw hydrolysate to molasses as a diluent enhances ethanol production using a robust Saccharomyces cerevisiae NGY10 strain," Renewable Energy, Elsevier, vol. 186(C), pages 790-801.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:775-782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.