IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp108-115.html
   My bibliography  Save this article

Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer

Author

Listed:
  • Oh, Seung-Jin
  • Choi, Gyung-Goo
  • Kim, Joo-Sik

Abstract

Pyrolysis of palm kernel shell was performed using a two-stage pyrolyzer consisting of an auger reactor and a fluidized bed reactor within the auger reactor temperature range of ∼290–380 °C at the fluidized bed reactor temperature of ∼520 °C, and with a variable residence time of the feed material in the auger reactor. The highest bio-oil yield of the two-stage pyrolysis was ∼56 wt%. The bio-oil derived from the auger reactor contained degradation products of the hemicelluloses of PKS, such as acetic acid, and furfural, whereas the fluidized bed reactor produced a bio-oil with high concentrations of acetic acid and phenol. The auger reactor temperature and the residence time of PKS in the auger reactor had an influence on the acetic acid concentration in the bio-oil, while their changes did not induce an observable trend on the phenol concentration in the bio-oil derived from the fluidized bed reactor. The maximum concentrations of acetic acid and phenol in bio-oil were ∼78 and 12 wt% dry basis, respectively. As a result, it was possible for the two-stage pyrolyzer to separately produce two different bio-oils in one operation without any costly fractionation process of bio-oils.

Suggested Citation

  • Oh, Seung-Jin & Choi, Gyung-Goo & Kim, Joo-Sik, 2016. "Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer," Energy, Elsevier, vol. 113(C), pages 108-115.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:108-115
    DOI: 10.1016/j.energy.2016.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216309689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Seung-Jin & Choi, Gyung-Goo & Kim, Joo-Sik, 2015. "Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural," Energy, Elsevier, vol. 88(C), pages 697-702.
    2. Guo, Xiujuan & Wang, Shurong & Guo, Zuogang & Liu, Qian & Luo, Zhongyang & Cen, Kefa, 2010. "Pyrolysis characteristics of bio-oil fractions separated by molecular distillation," Applied Energy, Elsevier, vol. 87(9), pages 2892-2898, September.
    3. Zhang, Le & Liu, Ronghou & Yin, Renzhan & Mei, Yuanfei, 2013. "Upgrading of bio-oil from biomass fast pyrolysis in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 66-72.
    4. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guzelciftci, Begum & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Production of phenol-rich bio-oil via a two-stage pyrolysis of wood," Energy, Elsevier, vol. 200(C).
    2. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    3. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    2. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Balasundram, Vekes & Ibrahim, Norazana & Kasmani, Rafiziana Md. & Isha, Ruzinah & Hamid, Mohd. Kamaruddin Abd. & Hasbullah, Hasrinah & Ali, Roshafima Rasit, 2018. "Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil," Applied Energy, Elsevier, vol. 220(C), pages 787-799.
    4. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Ribeiro, Luiz Augusto Badan & Martins, Robson Cristiano & Mesa-Pérez, Juan Miguel & Bizzo, Waldir Antonio, 2019. "Study of bio-oil properties and ageing through fractionation and ternary mixtures with the heavy fraction as the main component," Energy, Elsevier, vol. 169(C), pages 344-355.
    6. Toscano Miranda, Nahieh & Lopes Motta, Ingrid & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2021. "Sugarcane bagasse pyrolysis: A review of operating conditions and products properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    8. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    9. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    10. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    11. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    12. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    13. Kluska, Jacek & Turzyński, Tomasz & Ochnio, Mateusz & Kardaś, Dariusz, 2020. "Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets," Renewable Energy, Elsevier, vol. 149(C), pages 1246-1253.
    14. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    16. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    17. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    18. Devasahayam, Sheila & Albijanic, Boris, 2024. "Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms," Renewable Energy, Elsevier, vol. 222(C).
    19. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    20. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:108-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.