IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp1-13.html
   My bibliography  Save this article

Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

Author

Listed:
  • Feng, Junfeng
  • Hse, Chung-yun
  • Wang, Kui
  • Yang, Zhongzhi
  • Jiang, Jianchun
  • Xu, Junming

Abstract

Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic compounds fractions (1#, 2#, and 3#) were separated from liquefied biomass with stepwise precipitation and extraction. Based on HSQC NMR analysis, three phenolic compounds fractions were mainly comprised of aromatic and phenolic derivatives. Three phenolic compounds fractions were hydrogenated and deoxygenated to cyclohexanes using bifunctional catalysts via in situ hydrodeoxygenation. During the in situ hydrodeoxygenation, we introduced bifunctional catalysts combined of Raney Ni with HZSM-5. The bifunctional catalysts showed high selectivity for removing oxygen-containing groups in biomass-derived phenolic compounds. And the hydrogen was supplied by aqueous phase reforming of methanol without external H2. Additionally, the mechanism based on our investigation of in situ hydrodeoxygenation of phenolic compounds was proposed. During the in situ hydrodeoxygenation, the metal-catalyzed hydrogenation and acid-catalyzed hydrolysis/dehydration were supposed to couple together. Current results demonstrated that in situ hydrodeoxygenation using bifunctional catalysts is a promising and efficient route for converting biomass-derived phenolic compounds into fuel additives and liquid hydrocarbon biofuels.

Suggested Citation

  • Feng, Junfeng & Hse, Chung-yun & Wang, Kui & Yang, Zhongzhi & Jiang, Jianchun & Xu, Junming, 2017. "Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts," Energy, Elsevier, vol. 135(C), pages 1-13.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:1-13
    DOI: 10.1016/j.energy.2017.06.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patel, Rajesh N. & Bandyopadhyay, Santanu & Ganesh, Anuradda, 2011. "Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction," Energy, Elsevier, vol. 36(3), pages 1535-1542.
    2. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    3. Guo, Xiujuan & Wang, Shurong & Guo, Zuogang & Liu, Qian & Luo, Zhongyang & Cen, Kefa, 2010. "Pyrolysis characteristics of bio-oil fractions separated by molecular distillation," Applied Energy, Elsevier, vol. 87(9), pages 2892-2898, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Danhua & Liu, Shiyun & Wang, Sen & Zhou, Renwu & Zhou, Rusen & Fang, Zhi & Zhang, Xianhui & Cullen, Patrick J. & Ostrikov, Kostya (Ken), 2020. "Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield," Renewable Energy, Elsevier, vol. 157(C), pages 1061-1071.
    2. Huang, Dexin & Song, Gongxiang & Li, Ruochen & Han, Hengda & He, Limo & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Evolution mechanisms of bio-oil from conventional and nitrogen-rich biomass during photo-thermal pyrolysis," Energy, Elsevier, vol. 282(C).
    3. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    4. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toscano Miranda, Nahieh & Lopes Motta, Ingrid & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2021. "Sugarcane bagasse pyrolysis: A review of operating conditions and products properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Zhu, Zhe & Rosendahl, Lasse & Toor, Saqib Sohail & Yu, Donghong & Chen, Guanyi, 2015. "Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation," Applied Energy, Elsevier, vol. 137(C), pages 183-192.
    3. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    5. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    6. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    8. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    9. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    10. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    11. Wang, Haoqi & Zhang, Siduo & Bi, Xiaotao & Clift, Roland, 2020. "Greenhouse gas emission reduction potential and cost of bioenergy in British Columbia, Canada," Energy Policy, Elsevier, vol. 138(C).
    12. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    13. Biswas, Bijoy & Arun Kumar, Aishwarya & Bisht, Yashasvi & Krishna, Bhavya B. & Kumar, Jitendra & Bhaskar, Thallada, 2021. "Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides," Energy, Elsevier, vol. 217(C).
    14. Robert S. Weber & Johnathan E. Holladay & Cynthia Jenks & Ellen A. Panisko & Lesley J. Snowden‐Swan & Magdalena Ramirez‐Corredores & Brian Baynes & Largus T. Angenent & Dane Boysen, 2018. "Modularized production of fuels and other value‐added products from distributed, wasted, or stranded feedstocks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    15. Chen, Chunxiang & Qi, Qianhao & Huang, Dengchang & Zeng, Tianyang & Bu, Xiaoyan & Huang, Yuting & Huang, Haozhong, 2021. "Effect of additive mixture on microwave-assisted catalysis pyrolysis of microalgae," Energy, Elsevier, vol. 229(C).
    16. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
    17. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    18. Omidkar, Ali & Alagumalai, Avinash & Li, Zhaofei & Song, Hua, 2024. "Machine learning assisted techno-economic and life cycle assessment of organic solid waste upgrading under natural gas," Applied Energy, Elsevier, vol. 355(C).
    19. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    20. Hu, Xun & Lievens, Caroline & Mourant, Daniel & Wang, Yi & Wu, Liping & Gunawan, Richard & Song, Yao & Li, Chun-Zhu, 2013. "Investigation of deactivation mechanisms of a solid acid catalyst during esterification of the bio-oils from mallee biomass," Applied Energy, Elsevier, vol. 111(C), pages 94-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.