IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v97y2016icp102-111.html
   My bibliography  Save this article

Realizing potential savings of energy and emissions from efficient household appliances in India

Author

Listed:
  • Parikh, Kirit S.
  • Parikh, Jyoti K.

Abstract

The paper projects households' stock of four major electricity consuming appliances till 2030 and explores policy options to accelerate adoption of more energy efficient appliances. India's rapid economic growth has enabled the growing middle class to buy household appliances in increasing numbers. The consequent rise in energy consumption and GHG emissions can be significantly reduced if consumers are motivated by awareness and options in the market to buy energy efficient appliances. India has introduced a star rating scheme for appliances, and even without incentives consumers purchase star-rated appliances. The stock of household appliances is projected using the data of a national sample survey of household consumption, observed sale of star-rated appliances and projected consumption distribution.

Suggested Citation

  • Parikh, Kirit S. & Parikh, Jyoti K., 2016. "Realizing potential savings of energy and emissions from efficient household appliances in India," Energy Policy, Elsevier, vol. 97(C), pages 102-111.
  • Handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:102-111
    DOI: 10.1016/j.enpol.2016.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516303585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanchez, Marla C. & Brown, Richard E. & Webber, Carrie & Homan, Gregory K., 2008. "Savings estimates for the United States Environmental Protection Agency's ENERGY STAR voluntary product labeling program," Energy Policy, Elsevier, vol. 36(6), pages 2098-2108, June.
    2. Ghosh, Abhik & Gangopadhyay, Kausik & Basu, B., 2011. "Consumer expenditure distribution in India, 1983–2007: Evidence of a long Pareto tail," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 83-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phadke, Amol & Park, Won Young & Abhyankar, Nikit, 2019. "Providing reliable and financially sustainable electricity access in India using super-efficient appliances," Energy Policy, Elsevier, vol. 132(C), pages 1163-1175.
    2. Singh, Vivek Kumar & Henriques, Carla Oliveira & Martins, António Gomes, 2018. "Fostering investment on energy efficient appliances in India–A multi-perspective economic input-output lifecycle assessment," Energy, Elsevier, vol. 149(C), pages 1022-1035.
    3. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    4. Orset, Caroline, 2021. "Is information a good policy instrument to influence the energy behaviour of households?," Energy Economics, Elsevier, vol. 102(C).
    5. Paladugula, Anantha Lakshmi & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Pal, Sarbojit & Clarke, Leon & Evans, Meredydd & Kyle, Page & Koti, Poonam Nagar & Parikh, Kirit & Qamar, Sha, 2018. "A multi-model assessment of energy and emissions for India's transportation sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 10-18.
    6. Arijit Chanda & Gaurav Kapoor & Sandhya Sundararagavan & Yeshika Malik, 2018. "Karnataka Electricity Demand Forecasting FY17-22," Working Papers id:12508, eSocialSciences.
    7. Sun, Chuanwang & Ding, Dan & Yang, Mian, 2017. "Estimating the complete CO2 emissions and the carbon intensity in India: From the carbon transfer perspective," Energy Policy, Elsevier, vol. 109(C), pages 418-427.
    8. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    9. Parikh, Kirit S., 2020. "019," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 3(02), July.
    10. Parikh, Kirit S. & Parikh, Jyoti K. & Ghosh, Probal P., 2018. "Can India grow and live within a 1.5 degree CO2 emissions budget?," Energy Policy, Elsevier, vol. 120(C), pages 24-37.
    11. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza & Piran, Md Jalil, 2020. "A game theoretic approach for the duopoly pricing of energy-efficient appliances regarding innovation protection and social welfare," Energy, Elsevier, vol. 200(C).
    12. Saqib Ali & Habib Ullah & Minhas Akbar & Waheed Akhtar & Hasan Zahid, 2019. "Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    13. Thapar, Sapan, 2020. "Energy consumption behavior: A data-based analysis of urban Indian households," Energy Policy, Elsevier, vol. 143(C).
    14. Shaleen Singhal & Sapan Thapar & Meenakshi Kumar & Sourabh Jain, 2022. "Impacts of sustainable consumption and production initiatives in energy and waste management sectors: examples from India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14184-14209, December.
    15. Vivek Kumar Singh & Carla Oliveira Henriques & António Gomes Martins, 2019. "Assessment of energy‐efficient appliances: A review of the technologies and policies in India's residential sector," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zha, Donglan & Yang, Guanglei & Wang, Wenzhong & Wang, Qunwei & Zhou, Dequn, 2020. "Appliance energy labels and consumer heterogeneity: A latent class approach based on a discrete choice experiment in China," Energy Economics, Elsevier, vol. 90(C).
    2. Lim, Seong-Rin & Schoenung, Julie M., 2011. "Measurement and analysis of product energy efficiency to assist energy star criteria development: An example for desktop computers," Energy Policy, Elsevier, vol. 39(12), pages 8003-8010.
    3. Galarraga, Ibon & Abadie, Luis M. & Kallbekken, Steffen, 2016. "Designing incentive schemes for promoting energy-efficient appliances: A new methodology and a case study for Spain," Energy Policy, Elsevier, vol. 90(C), pages 24-36.
    4. Pizer, William A. & Morgenstern, Richard & Shih, Jhih-Shyang, 2011. "The performance of industrial sector voluntary climate programs: Climate Wise and 1605(b)," Energy Policy, Elsevier, vol. 39(12), pages 7907-7916.
    5. Inoue, Nozomu & Matsumoto, Shigeru, 2019. "An examination of losses in energy savings after the Japanese Top Runner Program?," Energy Policy, Elsevier, vol. 124(C), pages 312-319.
    6. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    7. Galarraga, Ibon & Abadie, Luis M. & Ansuategi, Alberto, 2013. "Efficiency, effectiveness and implementation feasibility of energy efficiency rebates: The “Renove” plan in Spain," Energy Economics, Elsevier, vol. 40(S1), pages 98-107.
    8. Gilles Grolleau & Lisette Ibanez & Naoufel Mzoughi & Mario Teisl, 2016. "Helping eco-labels to fulfil their promises," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 792-802, August.
    9. Apriesnig, Jenny L. & Manning, Dale T. & Suter, Jordan F. & Magzamen, Sheryl & Cross, Jennifer E., 2020. "Academic stars and Energy Stars, an assessment of student academic achievement and school building energy efficiency," Energy Policy, Elsevier, vol. 147(C).
    10. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    11. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    12. Ibon Galarraga & Luis M. Abadie, 2014. "The use of “Bonus-Malus†schemes for promoting energy-efficient household appliances: a case study for Spain," Working Papers 2014-06, BC3.
    13. Chia-Wei Hsu & Tsai-Chi Kuo & Guey-Shin Shyu & Pi-Shen Chen, 2014. "Low Carbon Supplier Selection in the Hotel Industry," Sustainability, MDPI, vol. 6(5), pages 1-27, May.
    14. Nicole D Sintov & Lee V White & Hugh Walpole, 2019. "Thermostat wars? The roles of gender and thermal comfort negotiations in household energy use behavior," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    15. Bae, Jeong Hwan & Rishi, Meenakshi, 2018. "Increasing consumer participation rates for green pricing programs: A choice experiment for South Korea," Energy Economics, Elsevier, vol. 74(C), pages 490-502.
    16. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    17. Bull, Joe, 2012. "Loads of green washing—can behavioural economics increase willingness-to-pay for efficient washing machines in the UK?," Energy Policy, Elsevier, vol. 50(C), pages 242-252.
    18. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    19. Keramitsoglou, Kiriaki M. & Mellon, Robert C. & Tsagkaraki, Maria I. & Tsagarakis, Konstantinos P., 2020. "Designing a logo for renewable energy sources with public participation: Empirical evidence from Greece," Renewable Energy, Elsevier, vol. 153(C), pages 1205-1218.
    20. Anand Sahasranaman & Henrik Jeldtoft Jensen, 2021. "Dynamics of reallocation within India’s income distribution," Indian Economic Review, Springer, vol. 56(1), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:102-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.