IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3042-3054.html
   My bibliography  Save this article

Historical costs of coal-fired electricity and implications for the future

Author

Listed:
  • McNerney, James
  • Doyne Farmer, J.
  • Trancik, Jessika E.

Abstract

We study the cost of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation cost, energy density, thermal efficiency, plant construction cost, interest rate, capacity factor, and operations and maintenance cost. The dominant determinants of cost have been the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 to 1970, increasing from 1970 to 1990, and leveling off since then. Our analysis emphasizes the importance of using long time series and comparing electricity generation technologies using decomposed total costs, rather than costs of single components like capital. By taking this approach we find that the history of coal-fired electricity suggests there is a fluctuating floor to its future costs, which is determined by coal prices. Even if construction costs resumed a decreasing trend, the cost of coal-based electricity would drop for a while but eventually be determined by the price of coal, which fluctuates while showing no long-term trend.

Suggested Citation

  • McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3042-3054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511000474
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Joskow & Nancy L. Rose, 1985. "The Effects of Technological Change, Experience, and Environmental Regulation on the Construction Cost of Coal-Burning Generating Units," RAND Journal of Economics, The RAND Corporation, vol. 16(1), pages 1-17, Spring.
    2. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    3. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    4. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt1f25b3xq, Institute of Transportation Studies, UC Davis.
    5. Koomey, Jonathan & Hultman, Nathan E., 2007. "A reactor-level analysis of busbar costs for US nuclear plants, 1970-2005," Energy Policy, Elsevier, vol. 35(11), pages 5630-5642, November.
    6. Gollop, Frank M & Roberts, Mark J, 1983. "Environmental Regulations and Productivity Growth: The Case of Fossil-Fueled Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 654-674, August.
    7. Cowing, Thomas G, 1974. "Technical Change and Scale Economies in an Engineering Production Function: The Case of Steam Electric Power," Journal of Industrial Economics, Wiley Blackwell, vol. 23(2), pages 135-152, December.
    8. Hisnanick, John J. & Kymn, Kern O., 1999. "Modeling economies of scale: the case of US electric power companies," Energy Economics, Elsevier, vol. 21(3), pages 225-237, June.
    9. Nelson, Randy A & Wohar, Mark E, 1983. "Regulation, Scale Economies, and Productivity in Steam-Electric Generation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(1), pages 57-79, February.
    10. Yeh, Sonia & Rubin, Edward S, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt3zz2w2wr, Institute of Transportation Studies, UC Davis.
    11. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt96z5s545, Institute of Transportation Studies, UC Davis.
    12. John F. Muth, 1986. "Search Theory and the Manufacturing Progress Function," Management Science, INFORMS, vol. 32(8), pages 948-962, August.
    13. Gavin Sinclair & Steven Klepper & Wesley Cohen, 2000. "What's Experience Got to Do With It? Sources of Cost Reduction in a Large Specialty Chemicals Producer," Management Science, INFORMS, vol. 46(1), pages 28-45, January.
    14. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    15. Yeh, Sonia & Rubin, Edward, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt4xn4w7rn, Institute of Transportation Studies, UC Davis.
    16. McCabe, Mark J, 1996. "Principals, Agents, and the Learning Curve: The Case of Steam-Electric Power Plant Design and Construction," Journal of Industrial Economics, Wiley Blackwell, vol. 44(4), pages 357-375, December.
    17. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    2. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    3. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    5. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    6. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    7. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    8. Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
    9. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    11. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    12. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    13. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
    14. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
    15. Kaminski, Jacek & KudeLko, Mariusz, 2010. "The prospects for hard coal as a fuel for the Polish power sector," Energy Policy, Elsevier, vol. 38(12), pages 7939-7950, December.
    16. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    17. Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
    18. Liu, Qiang & Shi, Minjun & Jiang, Kejun, 2009. "New power generation technology options under the greenhouse gases mitigation scenario in China," Energy Policy, Elsevier, vol. 37(6), pages 2440-2449, June.
    19. Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
    20. Barma, M.C. & Saidur, R. & Rahman, S.M.A. & Allouhi, A. & Akash, B.A. & Sait, Sadiq M., 2017. "A review on boilers energy use, energy savings, and emissions reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 970-983.

    More about this item

    Keywords

    Coal Electricity Historical cost;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3042-3054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.