IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v66y2014icp144-156.html
   My bibliography  Save this article

Impact of oil prices, economic diversification policies and energy conservation programs on the electricity and water demands in Kuwait

Author

Listed:
  • Wood, Michael
  • Alsayegh, Osamah A.

Abstract

This paper describes the influences of oil revenue and government's policies toward economic developments and energy efficiency on the electricity and water demands. A Kuwait-specific electricity and water demand model was developed based on historic data of oil income, gross domestic product (GDP), population and electric load and water demand over the past twelve years (1998–2010). Moreover, the model took into account the future mega projects, annual new connected loads and expected application of energy conservation programs. It was run under six circumstances representing the combinations of three oil income scenarios and two government action policies toward economic diversification and energy conservation. The first government policy is the status quo with respect to economic diversification and applying energy conservation programs. The second policy scenario is the proactive strategy of raising the production of the non-oil sector revenue and enforcing legislations toward energy demand side management and conservation. In the upcoming 20 years, the average rates of change of the electric load and water demand increase are 0.13GW and 3.0MIGD, respectively, per US dollar oil price increase. Moreover, through proactive policy, the rates of average load and water demand decrease are 0.13GW and 2.9MIGD per year, respectively.

Suggested Citation

  • Wood, Michael & Alsayegh, Osamah A., 2014. "Impact of oil prices, economic diversification policies and energy conservation programs on the electricity and water demands in Kuwait," Energy Policy, Elsevier, vol. 66(C), pages 144-156.
  • Handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:144-156
    DOI: 10.1016/j.enpol.2013.10.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513010847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.10.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    2. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2009. "Energy demand models for policy formulation : a comparative study of energy demand models," Policy Research Working Paper Series 4866, The World Bank.
    3. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    2. Azar, Elie & Alaifan, Bader & Lin, Min & Trepci, Esra & El Asmar, Mounir, 2021. "Drivers of energy consumption in Kuwaiti buildings: Insights from a hybrid statistical and building performance simulation approach," Energy Policy, Elsevier, vol. 150(C).
    3. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    4. Ayele Gelan & Geoffrey J. D. Hewings & Ahmad Alawadhi, 2021. "Diversifying a resource-dependent economy: private–public relationships in the Kuwaiti economy," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-22, December.
    5. Alshawaf, Mohammad & Poudineh, Rahmatallah & Alhajeri, Nawaf S., 2020. "Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Mohammad Al-Zuhair & Talal AL-Bazali, 2022. "Causality Between Energy Consumption and Economic Growth: The Case of Kuwait," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 22-29, November.
    7. Naegele, S.M. & McCandless, T.C. & Greybush, S.J. & Young, G.S. & Haupt, S.E. & Al-Rasheedi, M., 2020. "Climatology of wind variability for the Shagaya region in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Alsayegh, Osamah & Saker, Nathalie & Alqattan, Ayman, 2018. "Integrating sustainable energy strategy with the second development plan of Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3430-3440.
    9. Osama Alfalah, 2021. "Estimating Residential Demand for Water in Kuwait: A Cointegration Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 283-287.
    10. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    2. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    3. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    4. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    5. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    6. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    7. Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
    8. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
    9. Hossein Iranmanesh & Majid Abdollahzade & Arash Miranian, 2011. "Mid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models," Energies, MDPI, vol. 5(1), pages 1-21, December.
    10. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    11. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    12. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    13. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    14. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    15. Habeebur Rahman & Iniyan Selvarasan & Jahitha Begum A, 2018. "Short-Term Forecasting of Total Energy Consumption for India-A Black Box Based Approach," Energies, MDPI, vol. 11(12), pages 1-21, December.
    16. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Daniya Tlegenova, 2015. "Forecasting Exchange Rates Using Time Series Analysis: The sample of the currency of Kazakhstan," Papers 1508.07534, arXiv.org.
    18. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    20. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:144-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.