IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v44y2012icp1-9.html
   My bibliography  Save this article

Impact of window selection on the energy performance of residential buildings in South Korea

Author

Listed:
  • Ihm, Pyeongchan
  • Park, Lyool
  • Krarti, Moncef
  • Seo, Donghyun

Abstract

With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code.

Suggested Citation

  • Ihm, Pyeongchan & Park, Lyool & Krarti, Moncef & Seo, Donghyun, 2012. "Impact of window selection on the energy performance of residential buildings in South Korea," Energy Policy, Elsevier, vol. 44(C), pages 1-9.
  • Handle: RePEc:eee:enepol:v:44:y:2012:i:c:p:1-9
    DOI: 10.1016/j.enpol.2011.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511006434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, M.C. & Garg, S.N., 2009. "Energy rating of different glazings for Indian climates," Energy, Elsevier, vol. 34(11), pages 1986-1992.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    2. Hyomun Lee & Kyungwoo Lee & Eunho Kang & Dongsu Kim & Myunghwan Oh & Jongho Yoon, 2023. "Evaluation of Heated Window System to Enhance Indoor Thermal Comfort and Reduce Heating Demands Based on Simulation Analysis in South Korea," Energies, MDPI, vol. 16(3), pages 1-22, February.
    3. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    4. Giorgio Baldinelli & Agnieszka Lechowska & Francesco Bianchi & Jacek Schnotale, 2020. "Sensitivity Analysis of Window Frame Components Effect on Thermal Transmittance," Energies, MDPI, vol. 13(11), pages 1-12, June.
    5. Taesub Lim & Woong Seog Yim & Daeung Danny Kim, 2020. "Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea," Energies, MDPI, vol. 13(18), pages 1-14, September.
    6. Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    7. Abdelaziz Farouk Mohamed & Mohammed M. Gomaa & Amira Ahmed Amir & Ayman Ragab, 2023. "Energy, Thermal, and Economic Benefits of Aerogel Glazing Systems for Educational Buildings in Hot Arid Climates," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    8. Mi-Su Shin & Kyu-Nam Rhee & Ji-Yong Yu & Gun-Joo Jung, 2017. "Determination of Equivalent Thermal Conductivity of Window Spacers in Consideration of Condensation Prevention and Energy Saving Performance," Energies, MDPI, vol. 10(5), pages 1-21, May.
    9. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    10. He, Qiong & Hossain, Md. Uzzal & Ng, S. Thomas & Augenbroe, Godfried, 2021. "Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Byung Chang Kwag & Sanghee Han & Gil Tae Kim & Beobjeon Kim & Jong Yeob Kim, 2020. "Analysis of the Effects of Strengthening Building Energy Policy on Multifamily Residential Buildings in South Korea," Sustainability, MDPI, vol. 12(9), pages 1-20, April.
    12. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    13. Walery Jezierski & Miroslaw Zukowski, 2023. "Evaluation of the Impact of Window Parameters on Energy Demand and CO 2 Emission Reduction for a Single-Family House," Energies, MDPI, vol. 16(11), pages 1-20, May.
    14. Simeng Li & Yanqiu Cui & Nerija Banaitienė & Chunlu Liu & Mark B. Luther, 2021. "Sensitivity Analysis for Carbon Emissions of Prefabricated Residential Buildings with Window Design Elements," Energies, MDPI, vol. 14(19), pages 1-25, October.
    15. Jelena M. Djoković & Ružica R. Nikolić & Jan Bujnak & Branislav Hadzima & Filip Pastorek & Renata Dwornicka & Robert Ulewicz, 2022. "Selection of the Optimal Window Type and Orientation for the Two Cities in Serbia and One in Slovakia," Energies, MDPI, vol. 15(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.
    2. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    3. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    4. Pereira, Júlia & Rivero, Cristina Camacho & Gomes, M. Glória & Rodrigues, A. Moret & Marrero, Madelyn, 2021. "Energy, environmental and economic analysis of windows’ retrofit with solar control films: A case study in Mediterranean climate," Energy, Elsevier, vol. 233(C).
    5. Xu Chen & Saihong Zhu & Tianyi Chen, 2022. "Thermal Parameters Calibration and Energy-Saving Evaluation of Spectral Selective Absorption Film Coated Glazing System Based on Heat Transfer Simulation," Energies, MDPI, vol. 15(8), pages 1-12, April.
    6. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    7. Stevanović, Sanja, 2016. "Parametric study of a cost-optimal, energy efficient office building in Serbia," Energy, Elsevier, vol. 117(P2), pages 492-505.
    8. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    9. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    10. Silvia Cesari & Paolo Valdiserri & Maddalena Coccagna & Sante Mazzacane, 2020. "The Energy Saving Potential of Wide Windows in Hospital Patient Rooms, Optimizing the Type of Glazing and Lighting Control Strategy under Different Climatic Conditions," Energies, MDPI, vol. 13(8), pages 1-24, April.
    11. Premrov, Miroslav & Žegarac Leskovar, Vesna & Mihalič, Klara, 2016. "Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions," Energy, Elsevier, vol. 108(C), pages 201-211.
    12. Audenaert, A. & De Boeck, L. & Roelants, K., 2010. "Economic analysis of the profitability of energy-saving architectural measures for the achievement of the EPB-standard," Energy, Elsevier, vol. 35(7), pages 2965-2971.
    13. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2014. "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates," Applied Energy, Elsevier, vol. 134(C), pages 215-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:44:y:2012:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.