IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v41y2012icp878-884.html
   My bibliography  Save this article

China's growing methanol economy and its implications for energy and the environment

Author

Listed:
  • Yang, Chi-Jen
  • Jackson, Robert B.

Abstract

For more than a decade, Nobel laureate George Olah and coworkers have advocated the Methanol Economy – replacing petroleum-based fuels and chemicals with methanol and methanol-derivatives – as a path to sustainable development. A first step to this vision appears to be occurring in China. In the past five years, China has quickly built an industry of coal-based methanol and dimethyl ether (DME) that is competitive in price with petroleum-based fuels. Methanol fuels offer many advantages, including a high octane rating and cleaner-burning properties than gasoline. Methanol also has some disadvantages. A coal-based Methanol Economy could enhance water shortages in China, increase net carbon dioxide emissions, and add volatility to regional and global coal prices. China's rapidly expanding Methanol Economy provides an interesting experiment for what could happen elsewhere if methanol is widely adopted, as proposed by Olah and researchers before him.

Suggested Citation

  • Yang, Chi-Jen & Jackson, Robert B., 2012. "China's growing methanol economy and its implications for energy and the environment," Energy Policy, Elsevier, vol. 41(C), pages 878-884.
  • Handle: RePEc:eee:enepol:v:41:y:2012:i:c:p:878-884
    DOI: 10.1016/j.enpol.2011.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ellerman, A Denny, 1995. "The world price of coal," Energy Policy, Elsevier, vol. 23(6), pages 499-506, June.
    2. Phillips, V.D. & Kinoshita, C.M. & Neill, D.R. & Takahashi, P.K., 1990. "Thermochemical production of methanol from biomass in Hawaii," Applied Energy, Elsevier, vol. 35(3), pages 167-175.
    3. Kostka, Genia & Hobbs, William, 2010. "Embedded interests and the managerial local state: methanol fuel-switching in China," Frankfurt School - Working Paper Series 152, Frankfurt School of Finance and Management.
    4. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
    2. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    3. Chengjiang Li & Tingwen Jia & Shiyuan Wang & Xiaolin Wang & Michael Negnevitsky & Honglei Wang & Yujie Hu & Weibin Xu & Na Zhou & Gang Zhao, 2023. "Methanol Vehicles in China: A Review from a Policy Perspective," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    4. Matzen, Michael & Alhajji, Mahdi & Demirel, Yaşar, 2015. "Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix," Energy, Elsevier, vol. 93(P1), pages 343-353.
    5. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    6. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    7. Ghadikolaei, Meisam Ahmadi, 2016. "Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1440-1495.
    8. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    9. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    10. Yang, Chi-Jen & Xuan, Xiaowei & Jackson, Robert B., 2012. "China's coal price disturbances: Observations, explanations, and implications for global energy economies," Energy Policy, Elsevier, vol. 51(C), pages 720-727.
    11. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    12. Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
    13. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    14. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    15. von Storch, Henrik & Roeb, Martin & Stadler, Hannes & Sattler, Christian & Bardow, André & Hoffschmidt, Bernhard, 2016. "On the assessment of renewable industrial processes: Case study for solar co-production of methanol and power," Applied Energy, Elsevier, vol. 183(C), pages 121-132.
    16. Liu, Junheng & Ma, Haoran & Liang, Wenwen & Yang, Jun & Sun, Ping & Wang, Xidong & Wang, Yongxu & Wang, Pan, 2022. "Experimental investigation on combustion characteristics and influencing factors of PODE/methanol dual-fuel engine," Energy, Elsevier, vol. 260(C).
    17. Yang, Chi-Jen & Zhou, Yipei & Jackson, Robert B., 2014. "China's fuel gas sector: History, current status, and future prospects," Utilities Policy, Elsevier, vol. 28(C), pages 12-21.
    18. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    19. Dinesh, M.H. & Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio," Energy, Elsevier, vol. 239(PC).
    20. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    21. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "The consumption, production and transportation of methanol in China: A review," Energy Policy, Elsevier, vol. 63(C), pages 130-138.
    22. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    2. Dietmar Harhoff & Elisabeth Mueller & John Van Reenen, 2014. "What are the Channels for Technology Sourcing? Panel Data Evidence from German Companies," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 23(1), pages 204-224, March.
    3. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    4. Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ekawan, Rudianto & Duchene, Michel, 2006. "The evolution of hard coal trade in the Atlantic market," Energy Policy, Elsevier, vol. 34(13), pages 1487-1498, September.
    6. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Berg, Elin & Kverndokk, Snorre & Rosendahl, Knut Einar, 1998. "Gains from cartelisation in the oil market," Energy Policy, Elsevier, vol. 26(9), pages 725-727, August.
    8. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    9. Clarke, Rosemary & Edwards, T Huw, 1998. "Deregulation of the Japanese oil products market," Energy Policy, Elsevier, vol. 26(2), pages 129-141, February.
    10. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    11. Bin Xu, 2022. "How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    12. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2011. "Technoeconomic assessment of China’s indirect coal liquefaction projects with different CO2 capture alternatives," Energy, Elsevier, vol. 36(11), pages 6559-6566.
    13. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
    14. Mingquan Wang & Lingyun Zhang & Xin Su & Yang Lei & Qun Shen & Wei Wei & Maohua Wang, 2019. "Assessing the technology impact for industry carbon density reduction in China based on C3IAM-Tice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1455-1468, December.
    15. Boeing, Philipp & Mueller, Elisabeth & Sandner, Philipp, 2012. "What makes Chinese firms productive? Learning from indigenous and foreign sources of knowledge," Frankfurt School - Working Paper Series 196, Frankfurt School of Finance and Management.
    16. Zaklan, Aleksandar & Cullmann, Astrid & Neumann, Anne & von Hirschhausen, Christian, 2012. "The globalization of steam coal markets and the role of logistics: An empirical analysis," Energy Economics, Elsevier, vol. 34(1), pages 105-116.
    17. Kang, Shi-Gang & Zong, Zhi-Min & Shui, Heng-Fu & Wang, Zhi-Cai & Wei, Xian-Yong, 2011. "Comparison of catalytic hydroliquefaction of Xiaolongtan lignite over FeS, FeS+S and SO42-/ZrO2," Energy, Elsevier, vol. 36(1), pages 41-45.
    18. Koerner, Richard J, 1998. "The influence of sogo shosha companies on contract bargaining in the Pacific metallurgical coal trade," Resources Policy, Elsevier, vol. 24(3), pages 167-177, September.
    19. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    20. Jürgen Kruse & Heike Wetzel, 2016. "Innovation in Clean Coal Technologies: Empirical Evidence from Firm-Level Patent Data," MAGKS Papers on Economics 201615, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:41:y:2012:i:c:p:878-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.