IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3720-3731.html
   My bibliography  Save this article

Slow diffusion of LPG vehicles in China--Lessons from Shanghai, Guangzhou and Hong Kong

Author

Listed:
  • Leung, Vivian

Abstract

Compared with other alternative fuel vehicles (AFV), LPG vehicles (LPGV) have lower economic and technological barriers, leading to its faster growth in some developing countries in recent years. By means of regulation, Shanghai managed to have nearly all taxis converted to LPGV in the early 2000s, and all taxis and 80% of buses in Guangzhou are LPGV. Nevertheless, LPGV diffusion in China (excluding Hong Kong) has been slow and even showing signs of retreating. By 2008, less than 5% of taxis in Shanghai were LPGV. This paper looks into the problem by comparing the LPGV development of Shanghai, Guangzhou versus that of Hong Kong where the LPGV development seems to be running well. The obstacles of LPGV development in China include a lack of policy coherence between the central and local governments; insufficient price advantage of Autogas; not enough fueling stations; and high maintenance costs due to immature technology and poor quality control. Bi-fuel system has further magnified the problems in China. In order to facilitate the use of alternative fuel, efforts should be made to increase the number of AFVs as well as to ensure the availability and price-competitiveness of the alternative fuel concerned.

Suggested Citation

  • Leung, Vivian, 2011. "Slow diffusion of LPG vehicles in China--Lessons from Shanghai, Guangzhou and Hong Kong," Energy Policy, Elsevier, vol. 39(6), pages 3720-3731, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3720-3731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511002783
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jimin & Melaina, Marc W., 2006. "Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China," Energy Policy, Elsevier, vol. 34(11), pages 1299-1309, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raslavičius, Laurencas & Keršys, Artūras & Mockus, Saulius & Keršienė, Neringa & Starevičius, Martynas, 2014. "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 513-525.
    2. Biscoff, Robert & Akple, Maxwell & Turkson, Richard & Klomegah, Wise, 2012. "Scenario of the emerging shift from gasoline to LPG fuelled cars in Ghana: A case study in Ho Municipality, Volta Region," Energy Policy, Elsevier, vol. 44(C), pages 354-361.
    3. Ackah, Ishmael & TETTEH, ELIZABETH NARKIE, 2016. "Determinants of autogas demand among Taxi Drivers in rural Ghana," MPRA Paper 74242, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
    2. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    3. Binz, Christian & Truffer, Bernhard & Li, Li & Shi, Yajuan & Lu, Yonglong, 2012. "Conceptualizing leapfrogging with spatially coupled innovation systems: The case of onsite wastewater treatment in China," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 155-171.
    4. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    5. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
    6. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    7. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    8. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    9. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    10. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Lu, Jun & Zahedi, Ahmad & Yang, Chengshi & Wang, Mingzhou & Peng, Bo, 2013. "Building the hydrogen economy in China: Drivers, resources and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 543-556.
    12. Nithin Isaac & Akshay K. Saha, 2024. "Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model," Sustainability, MDPI, vol. 16(10), pages 1-24, May.
    13. Collantes, Gustavo O, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Institute of Transportation Studies, Working Paper Series qt82j0z800, Institute of Transportation Studies, UC Davis.
    14. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt92h7g194, Institute of Transportation Studies, UC Davis.
    15. López Cascales, J.J. & Juan-Segovia, M.C. & Ibáñez Molina, J. & Sánchez Vera, J. & Vivo Vivo, P.M., 2015. "Environmental impact associated with the substitution of internal combustion vehicles by fuel cell vehicles refueled with hydrogen generated by electrolysis using the power grid. An estimation focused," Renewable Energy, Elsevier, vol. 77(C), pages 79-85.
    16. Collantes, Gustavo Oscar, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Institute of Transportation Studies, Working Paper Series qt91f3d1ns, Institute of Transportation Studies, UC Davis.
    17. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt2k09h787, Institute of Transportation Studies, UC Davis.
    18. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    19. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    20. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3720-3731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.