IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp558-568.html
   My bibliography  Save this article

Hydrokinetic energy exploitation under combined river and tidal flow

Author

Listed:
  • Fouz, D.M.
  • Carballo, R.
  • Ramos, V.
  • Iglesias, G.

Abstract

Hydrokinetic energy has been mainly studied in areas where the principal driver of the current is the tide. However, in certain areas river discharges play also a principal role. The exploitation of the hydrokinetic resource in such areas has its own peculiarities, dictated by the combined influence of the two driving agents. The objective of this paper is to investigate the exploitation of hydrokinetic energy in the Miño Estuary, the largest estuary in NW Spain and N Portugal, with a focus on the site-specific performance of hydrokinetic energy converters (HECs) and its intra-annual variability. A state-of-the-art hydrodynamics numerical model is implemented and successfully validated based on field data. A third-generation HEC—to be more specific, the new Smart Freestream Turbine (SFT)—is considered, and its performance at the location with the greatest potential is assessed by means of: (i) site-specific efficiency, (ii) availability factor, and (iii) capacity factor. We find that, whereas the site-specific efficiency does not vary significantly, the availability and capacity factors do experience substantial intra-annual (seasonal) variability. In summer and autumn, river discharges are low, and the tide dominates the hydrokinetic resource. In contrast, during winter and spring, the river discharges significantly contribute to the resource, leading to a considerable increase in the availability and capacity factors. More generally, the results imply that in areas subject to combined fluvial and tidal influences the performance of HECs may depart significantly from that in tide-dominated areas, and this departure must be carefully weighed in assessing a project.

Suggested Citation

  • Fouz, D.M. & Carballo, R. & Ramos, V. & Iglesias, G., 2019. "Hydrokinetic energy exploitation under combined river and tidal flow," Renewable Energy, Elsevier, vol. 143(C), pages 558-568.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:558-568
    DOI: 10.1016/j.renene.2019.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    2. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    3. Garcia Novo, Patxi & Kyozuka, Yusaku & Ginzo Villamayor, Maria Jose, 2019. "Evaluation of turbulence-related high-frequency tidal current velocity fluctuation," Renewable Energy, Elsevier, vol. 139(C), pages 313-325.
    4. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    5. Rezanejad, K. & Guedes Soares, C. & López, I. & Carballo, R., 2017. "Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter," Renewable Energy, Elsevier, vol. 106(C), pages 1-16.
    6. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    7. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    8. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    9. Aghsaee, Payam & Markfort, Corey D., 2018. "Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine," Renewable Energy, Elsevier, vol. 125(C), pages 620-629.
    10. Petrie, John & Diplas, Panayiotis & Gutierrez, Marte & Nam, Soonkie, 2014. "Characterizing the mean flow field in rivers for resource and environmental impact assessments of hydrokinetic energy generation sites," Renewable Energy, Elsevier, vol. 69(C), pages 393-401.
    11. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    12. Arean, N. & Carballo, R. & Iglesias, G., 2017. "An integrated approach for the installation of a wave farm," Energy, Elsevier, vol. 138(C), pages 910-919.
    13. Garcia-Oliva, Miriam & Djordjević, Slobodan & Tabor, Gavin R., 2017. "The influence of channel geometry on tidal energy extraction in estuaries," Renewable Energy, Elsevier, vol. 101(C), pages 514-525.
    14. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    15. Blunden, L.S. & Bahaj, A.S., 2006. "Initial evaluation of tidal stream energy resources at Portland Bill, UK," Renewable Energy, Elsevier, vol. 31(2), pages 121-132.
    16. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    17. Carballo, R. & Iglesias, G. & Castro, A., 2009. "Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)," Renewable Energy, Elsevier, vol. 34(6), pages 1517-1524.
    18. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    19. Riglin, Jacob & Daskiran, Cosan & Jonas, Joseph & Schleicher, W. Chris & Oztekin, Alparslan, 2016. "Hydrokinetic turbine array characteristics for river applications and spatially restricted flows," Renewable Energy, Elsevier, vol. 97(C), pages 274-283.
    20. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    2. Cruz, M. & Henriques, R. & Pinho, J.L. & Avilez-Valente, P. & Bio, A. & Iglesias, I., 2023. "Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios," Energy, Elsevier, vol. 271(C).
    3. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    4. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "Tidal stream energy potential in the Shannon Estuary," Renewable Energy, Elsevier, vol. 185(C), pages 61-74.
    5. Gianmaria Giannini & Victor Ramos & Paulo Rosa-Santos & Tomás Calheiros-Cabral & Francisco Taveira-Pinto, 2022. "Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    6. Iglesias, I. & Bio, A. & Bastos, L. & Avilez-Valente, P., 2021. "Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    2. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    3. Iglesias, I. & Bio, A. & Bastos, L. & Avilez-Valente, P., 2021. "Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study," Energy, Elsevier, vol. 222(C).
    4. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    5. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    6. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    7. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "Tidal stream energy potential in the Shannon Estuary," Renewable Energy, Elsevier, vol. 185(C), pages 61-74.
    8. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    9. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    10. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    11. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    13. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    14. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis," Applied Energy, Elsevier, vol. 116(C), pages 167-177.
    15. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    16. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    17. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "Economic-financial modeling for marine current harnessing projects," Energy, Elsevier, vol. 158(C), pages 859-880.
    18. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    19. Cruz, M. & Henriques, R. & Pinho, J.L. & Avilez-Valente, P. & Bio, A. & Iglesias, I., 2023. "Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios," Energy, Elsevier, vol. 271(C).
    20. Gianmaria Giannini & Victor Ramos & Paulo Rosa-Santos & Tomás Calheiros-Cabral & Francisco Taveira-Pinto, 2022. "Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region," Sustainability, MDPI, vol. 14(5), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:558-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.