IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i7p2774-2787.html
   My bibliography  Save this article

Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness

Author

Listed:
  • Stepp, Matthew D.
  • Winebrake, James J.
  • Hawker, J. Scott
  • Skerlos, Steven J.

Abstract

The US transportation sector is a major contributor to global greenhouse gas (GHG) emissions. As such, policymakers and stakeholder groups have proposed a number of policy instruments aimed at reducing these emissions. In order to fully evaluate the effectiveness of these policies, policymakers must consider both the direct responses associated with policy actions, and the indirect responses that occur through complex relationships within socioeconomic systems. In cases where multiple policy instruments are employed, these indirect effects create policy interactions that are either complementary or competing; policymakers need to understand these interactions in order to leverage policy synergies and manage policy conflicts. Analysis of these indirect effects is particularly difficult in the transportation sector, where system boundaries are uncertain and feedback among systems components can be complicated. This paper begins to address this problem by applying systems dynamics tools (in particular causal loop diagrams) to help identify and understand the role of feedback effects on transportation-related GHG reduction policies. Policymakers can use this framework to qualitatively explore the impacts of various policy instruments, as well as identify important relationships that can be later included in quantitative modeling approaches.

Suggested Citation

  • Stepp, Matthew D. & Winebrake, James J. & Hawker, J. Scott & Skerlos, Steven J., 2009. "Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness," Energy Policy, Elsevier, vol. 37(7), pages 2774-2787, July.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2774-2787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00162-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    2. Farrell, Alexander E. & Sperling, Dan, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8ng2h3x7, Institute of Transportation Studies, UC Davis.
    3. Farrell, Alexander & Sperling, Daniel, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8xv635dc, Institute of Transportation Studies, UC Davis.
    4. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    5. Bandivadekar, Anup & Cheah, Lynette & Evans, Christopher & Groode, Tiffany & Heywood, John & Kasseris, Emmanuel & Kromer, Matthew & Weiss, Malcolm, 2008. "Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet," Energy Policy, Elsevier, vol. 36(7), pages 2754-2760, July.
    6. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    7. Greene, David L. & Plotkin, Steven E., 2001. "Energy futures for the US transport sector," Energy Policy, Elsevier, vol. 29(14), pages 1255-1270, November.
    8. William D. Nordhaus, 2006. "After Kyoto: Alternative Mechanisms to Control Global Warming," American Economic Review, American Economic Association, vol. 96(2), pages 31-34, May.
    9. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    10. Sperling, Daniel & Farrell, Alexander, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt5hv693r2, Institute of Transportation Studies, UC Davis.
    11. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    12. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    13. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    14. Farrell, Alexander E. & Sperling, Daniel & Brandt, A.R. & Eggert, A. & Farrell, A.E. & Haya, B.K. & Hughes, J. & Jenkins, B.M. & Jones, A.D. & Kammen, D.M. & Knittel, C.R. & Melaina, M.W. & O'Hare, M., 2007. "A Low-Carbon Fuel Standard for California Part 2: Policy Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1hm6k089, Institute of Transportation Studies, UC Berkeley.
    15. Byrne, John & Hughes, Kristen & Rickerson, Wilson & Kurdgelashvili, Lado, 2007. "American policy conflict in the greenhouse: Divergent trends in federal, regional, state, and local green energy and climate change policy," Energy Policy, Elsevier, vol. 35(9), pages 4555-4573, September.
    16. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    17. Lee, Kiseok & Ni, Shawn, 2002. "On the dynamic effects of oil price shocks: a study using industry level data," Journal of Monetary Economics, Elsevier, vol. 49(4), pages 823-852, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Elliott William, 2009. "New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax," University of California Transportation Center, Working Papers qt5gd206wv, University of California Transportation Center.
    2. Martin, Elliot William, 2009. "New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax," University of California Transportation Center, Working Papers qt6sz198c2, University of California Transportation Center.
    3. Chen, Anning, 2011. "Reliable GPS Integer Ambiguity Resolution," University of California Transportation Center, Working Papers qt9gs0t2f9, University of California Transportation Center.
    4. Lloro, Alicia & Brownstone, David, 2018. "Vehicle choice and utilization: Improving estimation with partially observed choices and hybrid pairs," Journal of choice modelling, Elsevier, vol. 28(C), pages 137-152.
    5. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    6. Santos, Georgina & Behrendt, Hannah & Maconi, Laura & Shirvani, Tara & Teytelboym, Alexander, 2010. "Part I: Externalities and economic policies in road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 2-45.
    7. Axsen, John & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2010. "Plug-in Hybrid Vehicle GHG Impacts in California: Integrating Consumer-Informed Recharge Profiles with an Electricity-Dispatch Model," Institute of Transportation Studies, Working Paper Series qt9zg6g60t, Institute of Transportation Studies, UC Davis.
    8. Huseynov, Samir & Palma, Marco A., 2018. "Does California’s LCFS Reduce CO2 Emissions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274200, Agricultural and Applied Economics Association.
    9. Wang, Banban & Pizer, William A. & Munnings, Clayton, 2022. "Price limits in a tradable performance standard," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    10. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    11. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    12. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    13. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    14. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    15. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    16. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    17. Greene, David L. & Welch, Jilleah G., 2018. "Impacts of fuel economy improvements on the distribution of income in the U.S," Energy Policy, Elsevier, vol. 122(C), pages 528-541.
    18. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    19. Rubin, Jonathan & Leiby, Paul N., 2013. "Tradable credits system design and cost savings for a national low carbon fuel standard for road transport," Energy Policy, Elsevier, vol. 56(C), pages 16-28.
    20. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2774-2787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.