IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i10p5413-5425.html
   My bibliography  Save this article

Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 1. Analysis of general data and analysis per country

Author

Listed:
  • Zervas, Efthimios

Abstract

Exhaust CO2 emitted from passenger cars is one of the major greenhouse effect gases. Several parameters influence the exhaust CO2 emissions of each passenger car: its characteristics (fuel used, vehicle weight, ...) and its use (annual mileage, driving conditions, ...). CO2 emissions from passenger cars decrease during last years; however, this decrease seems to reach its limits. Several parameters of the EU15 new PCs market, such as new passenger cars registrations, type of fuel used, engine capacity, max. power, max. specific power, segment distribution, vehicle weight and their CO2 emissions on the New European Driving Cycle are analyzed here. The target is to find the real market parameters influencing exhaust CO2 emissions. Because of the many data used and the parameters examined, this first part of the work is focused on the average values of each parameter studied and the values of each country, while the second part is based on the analysis of each PC segment and the third one on the analysis of the major brands presented in the European market.

Suggested Citation

  • Zervas, Efthimios, 2010. "Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 1. Analysis of general data and analysis per country," Energy Policy, Elsevier, vol. 38(10), pages 5413-5425, October.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:5413-5425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00089-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zervas, Efthimios & Poulopoulos, Stavros & Philippopoulos, Constantinos, 2006. "CO2 emissions change from the introduction of diesel passenger cars: Case of Greece," Energy, Elsevier, vol. 31(14), pages 2915-2925.
    2. Stead, D., 1999. "Relationships between transport emissions and travel patterns in Britain," Transport Policy, Elsevier, vol. 6(4), pages 247-258, October.
    3. Zervas, Efthimios, 2010. "Analysis of CO2 emissions and of the other characteristics of the European market of new passenger cars. 3. Brands analysis," Energy Policy, Elsevier, vol. 38(10), pages 5442-5456, October.
    4. Zervas, Efthimios, 2010. "Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 2. Segment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5426-5441, October.
    5. Sorrell, Steve, 1992. "Fuel efficiency in the UK vehicle stock," Energy Policy, Elsevier, vol. 20(8), pages 766-780, August.
    6. Zervas, Efthimios & Lazarou, Christos, 2008. "Influence of European passenger cars weight to exhaust CO2 emissions," Energy Policy, Elsevier, vol. 36(1), pages 248-257, January.
    7. Zervas, Efthimios, 2006. "CO2 benefit from the increasing percentage of diesel passenger cars. Case of Ireland," Energy Policy, Elsevier, vol. 34(17), pages 2848-2857, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin, Niall P.D. & Bishop, Justin D.K. & Choudhary, Ruchi & Boies, Adam M., 2015. "Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis," Applied Energy, Elsevier, vol. 157(C), pages 929-939.
    2. Pasaoglu, Guzay & Honselaar, Michel & Thiel, Christian, 2012. "Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe," Energy Policy, Elsevier, vol. 40(C), pages 404-421.
    3. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    4. Jesús Rodríguez-López & Gustavo A. Marrero & Rosa Marina González-Marrero, 2015. "Dieselization, CO2 emissions and fuel taxes in Europe," Working Papers 15.11, Universidad Pablo de Olavide, Department of Economics.
    5. Mijailović, Radomir, 2013. "The optimal lifetime of passenger cars based on minimization of CO2 emission," Energy, Elsevier, vol. 55(C), pages 869-878.
    6. Lucas, Alexandre & Alexandra Silva, Carla & Costa Neto, Rui, 2012. "Life cycle analysis of energy supply infrastructure for conventional and electric vehicles," Energy Policy, Elsevier, vol. 41(C), pages 537-547.
    7. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    8. Zervas, Efthimios, 2010. "Analysis of CO2 emissions and of the other characteristics of the European market of new passenger cars. 3. Brands analysis," Energy Policy, Elsevier, vol. 38(10), pages 5442-5456, October.
    9. Gustavo A. Marrero & Jesús Rodríguez-López & Rosa Marina González, 2020. "Car usage, $${\text {CO}}_{2}$$CO2 emissions and fuel taxes in Europe," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(2), pages 203-241, June.
    10. Bampatsou, Christina & Zervas, Efthimios, 2011. "Critique of the regulatory limitations of exhaust CO2 emissions from passenger cars in European union," Energy Policy, Elsevier, vol. 39(12), pages 7794-7802.
    11. Fontaras, Georgios & Dilara, Panagiota, 2012. "The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy," Energy Policy, Elsevier, vol. 49(C), pages 719-730.
    12. Pérez-López, Paula & Gasol, Carles M. & Oliver-Solà, Jordi & Huelin, Sagrario & Moreira, Ma Teresa & Feijoo, Gumersindo, 2013. "Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions," Energy Policy, Elsevier, vol. 60(C), pages 705-713.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    2. Mijailović, Radomir, 2013. "The optimal lifetime of passenger cars based on minimization of CO2 emission," Energy, Elsevier, vol. 55(C), pages 869-878.
    3. Zervas, Efthimios, 2010. "Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 2. Segment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5426-5441, October.
    4. Bampatsou, Christina & Zervas, Efthimios, 2011. "Critique of the regulatory limitations of exhaust CO2 emissions from passenger cars in European union," Energy Policy, Elsevier, vol. 39(12), pages 7794-7802.
    5. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    6. Hampf, Benjamin & Krüger, Jens J., 2010. "Technical efficiency of automobiles: A nonparametric approach incorporating carbon dioxide emissions," Darmstadt Discussion Papers in Economics 198, Darmstadt University of Technology, Department of Law and Economics.
    7. Ciccone, Alice, 2018. "Environmental effects of a vehicle tax reform: Empirical evidence from Norway," Transport Policy, Elsevier, vol. 69(C), pages 141-157.
    8. Liao, Chun-Hsiung & Tseng, Po-Hsing & Cullinane, Kevin & Lu, Chin-Shan, 2010. "The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port," Energy Policy, Elsevier, vol. 38(9), pages 5251-5257, September.
    9. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    10. Pasaoglu, Guzay & Honselaar, Michel & Thiel, Christian, 2012. "Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe," Energy Policy, Elsevier, vol. 40(C), pages 404-421.
    11. Hampf, Benjamin & Krüger, Jens, 2010. "Technical Efficiency of Automobiles – A Nonparametric Approach Incorporating Carbon Dioxide Emissions," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 43177, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Jeong, Suk Jae & Kim, Kyung Sup & Park, Jin-Won, 2009. "CO2 emissions change from the sales authorization of diesel passenger cars: Korean case study," Energy Policy, Elsevier, vol. 37(7), pages 2630-2638, July.
    13. Martin, Niall P.D. & Bishop, Justin D.K. & Choudhary, Ruchi & Boies, Adam M., 2015. "Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis," Applied Energy, Elsevier, vol. 157(C), pages 929-939.
    14. Rebeca Fontanilla Andong & Edsel Sajor, 2017. "Urban sprawl, public transport, and increasing CO2 emissions: the case of Metro Manila, Philippines," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 99-123, February.
    15. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
    16. Zervas, Efthimios, 2010. "Analysis of CO2 emissions and of the other characteristics of the European market of new passenger cars. 3. Brands analysis," Energy Policy, Elsevier, vol. 38(10), pages 5442-5456, October.
    17. Lucas, Alexandre & Alexandra Silva, Carla & Costa Neto, Rui, 2012. "Life cycle analysis of energy supply infrastructure for conventional and electric vehicles," Energy Policy, Elsevier, vol. 41(C), pages 537-547.
    18. Jesús Rodríguez-López & Gustavo A. Marrero & Rosa Marina González-Marrero, 2015. "Dieselization, CO2 emissions and fuel taxes in Europe," Working Papers 15.11, Universidad Pablo de Olavide, Department of Economics.
    19. Pérez-López, Paula & Gasol, Carles M. & Oliver-Solà, Jordi & Huelin, Sagrario & Moreira, Ma Teresa & Feijoo, Gumersindo, 2013. "Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions," Energy Policy, Elsevier, vol. 60(C), pages 705-713.
    20. Gustavo A. Marrero & Jesús Rodríguez-López & Rosa Marina González, 2020. "Car usage, $${\text {CO}}_{2}$$CO2 emissions and fuel taxes in Europe," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(2), pages 203-241, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:5413-5425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.