IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v191y2024ics0301421524001885.html
   My bibliography  Save this article

Why renovation obligations can boost social justice and might reduce energy poverty in a highly decarbonised housing sector

Author

Listed:
  • Müller, Andreas
  • Hummel, Marcus
  • Smet, Koen
  • Grabner, Daniel
  • Litschauer, Katharina
  • Imamovic, Irma
  • Özer, Fatma Ece
  • Kranzl, Lukas

Abstract

To ensure the achievement of the climate and energy policy targets and simultaneously guarantee affordability and inclusiveness, a thorough consideration of institutional settings is necessary, such as the structures of housing provision (SHP), and taking into account low-income households. This paper deals with the following research questions: (1) Is a CO2 tax sufficient to achieve decarbonisation in the Austrian housing sector, particularly considering different SHP and low-income households? and (2) What is the impact of regulatory policy instruments like a renovation obligation in combination with a CO2 tax, in particular on low-income households? In the first step, key institutional structures affecting housing in Austria are identified through a literature review, regulation analysis, and interviews with housing-related organizations. The second step expands the Invert/EE-Lab building stock model by integrating SHPs, household income levels and age groups. We use the model to compare scenarios with different stringencies of renovation obligation. The results show that CO2 taxes alone do not provide sufficient incentives for building owners to renovate their properties, leading to a burden on tenants, particularly low-income households. Mandatory, well-prepared, and long-term renovation targets can help compensate for these negative effects and unlock the full potential of CO2 taxes for decarbonisation.

Suggested Citation

  • Müller, Andreas & Hummel, Marcus & Smet, Koen & Grabner, Daniel & Litschauer, Katharina & Imamovic, Irma & Özer, Fatma Ece & Kranzl, Lukas, 2024. "Why renovation obligations can boost social justice and might reduce energy poverty in a highly decarbonised housing sector," Energy Policy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:enepol:v:191:y:2024:i:c:s0301421524001885
    DOI: 10.1016/j.enpol.2024.114168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524001885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Calise & Massimo Dentice D’Accadia & Carlo Barletta & Vittoria Battaglia & Antun Pfeifer & Neven Duic, 2017. "Detailed Modelling of the Deep Decarbonisation Scenarios with Demand Response Technologies in the Heating and Cooling Sector: A Case Study for Italy," Energies, MDPI, vol. 10(10), pages 1-33, October.
    2. Golubchikov, Oleg & Deda, Paola, 2012. "Governance, technology, and equity: An integrated policy framework for energy efficient housing," Energy Policy, Elsevier, vol. 41(C), pages 733-741.
    3. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    4. Ivana Rogulj & Marco Peretto & Vlasios Oikonomou & Shima Ebrahimigharehbaghi & Christos Tourkolias, 2023. "Decarbonisation Policies in the Residential Sector and Energy Poverty: Mitigation Strategies and Impacts in Central and Southern Eastern Europe," Energies, MDPI, vol. 16(14), pages 1-21, July.
    5. Chegut, Andrea & Eichholtz, Piet & Holtermans, Rogier, 2016. "Energy efficiency and economic value in affordable housing," Energy Policy, Elsevier, vol. 97(C), pages 39-49.
    6. Kranzl, Lukas & Hummel, Marcus & Müller, Andreas & Steinbach, Jan, 2013. "Renewable heating: Perspectives and the impact of policy instruments," Energy Policy, Elsevier, vol. 59(C), pages 44-58.
    7. Simon Dresner & Paul Ekins, 2006. "Economic instruments to improve UK home energy efficiency without negative social impacts," Fiscal Studies, Institute for Fiscal Studies, vol. 27(1), pages 47-74, March.
    8. Marina Economidou & Paolo Zangheri & Andreas Müller & Lukas Kranzl, 2018. "Financing the Renovation of the Cypriot Building Stock: An Assessment of the Energy Saving Potential of Different Policy Scenarios Based on the Invert/EE-Lab Model," Energies, MDPI, vol. 11(11), pages 1-25, November.
    9. Michael Ball, 1998. "Institutions in British Property Research: A Review," Urban Studies, Urban Studies Journal Limited, vol. 35(9), pages 1501-1517, August.
    10. Schaffrin, André & Reibling, Nadine, 2015. "Household energy and climate mitigation policies: Investigating energy practices in the housing sector," Energy Policy, Elsevier, vol. 77(C), pages 1-10.
    11. Ardak Akhatova & Lukas Kranzl & Fabian Schipfer & Charitha Buddhika Heendeniya, 2022. "Agent-Based Modelling of Urban District Energy System Decarbonisation—A Systematic Literature Review," Energies, MDPI, vol. 15(2), pages 1-27, January.
    12. De Mel, Ishanki & Bierkens, Floris & Liu, Xinyao & Leach, Matthew & Chitnis, Mona & Liu, Lirong & Short, Michael, 2023. "A decision-support framework for residential heating decarbonisation policymaking," Energy, Elsevier, vol. 268(C).
    13. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    14. Heffernan, Troy William & Daly, Matthew & Heffernan, Emma Elizabeth & Reynolds, Nina, 2021. "The carrot and the stick: Policy pathways to an environmentally sustainable rental housing sector," Energy Policy, Elsevier, vol. 148(PA).
    15. Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
    16. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reed, Jeffrey & Dailey, Emily & Shaffer, Brendan & Lane, Blake & Flores, Robert & Fong, Amber & Samuelsen, Scott, 2023. "Potential evolution of the renewable hydrogen sector using California as a reference market," Applied Energy, Elsevier, vol. 331(C).
    2. De-León Almaraz, Sofía & Rácz, Viktor & Azzaro-Pantel, Catherine & Szántó, Zoltán Oszkár, 2022. "Multiobjective and social cost-benefit optimisation for a sustainable hydrogen supply chain: Application to Hungary," Applied Energy, Elsevier, vol. 325(C).
    3. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).
    4. Ephraim Bonah Agyekum & Jeffrey Dankwa Ampah & Solomon Eghosa Uhunamure & Karabo Shale & Ifeoma Prisca Onyenegecha & Vladimir Ivanovich Velkin, 2023. "Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    5. Bae, Dasol & Kim, Yikyeom & Ko, Eun Hee & Ju Han, Seung & Lee, Jae W. & Kim, Minkyu & Kang, Dohyung, 2023. "Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures," Applied Energy, Elsevier, vol. 336(C).
    6. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    7. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    8. Kai Schulze & Mile Mišić & Nikola Radojičić & Berkin Serin, 2024. "Evaluating Partners for Renewable Energy Trading: A Multidimensional Framework and Tool," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    9. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    10. Scharf, Hendrik & Möst, Dominik, 2024. "Gas power — How much is needed on the road to carbon neutrality?," Energy Policy, Elsevier, vol. 187(C).
    11. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Wen, Chuang & Yang, Yan, 2024. "Exergy performance analysis of hydrogen recirculation ejectors exhibiting phase change behaviour in PEMFC applications," Energy, Elsevier, vol. 300(C).
    12. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    13. David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
    14. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Schlund, David & Schönfisch, Max, 2021. "Analysing the impact of a renewable hydrogen quota on the European electricity and natural gas markets," Applied Energy, Elsevier, vol. 304(C).
    16. Alrobaian, Abdulrahman A. & Alsagri, Ali Sulaiman, 2024. "Analysis of the effect of component size and demand pattern on the final price for a green hydrogen production system," Energy, Elsevier, vol. 307(C).
    17. Schönfisch, Max, 2022. "Charting the Development of a Global Market for Low-Carbon Hydrogen," EWI Working Papers 2022-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Adeola Akinpelu & Md Shafiul Alam & Md Shafiullah & Syed Masiur Rahman & Fahad Saleh Al-Ismail, 2023. "Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    19. Lena Tholen & Anna Leipprand & Dagmar Kiyar & Sarah Maier & Malte Küper & Thomas Adisorn & Andreas Fischer, 2021. "The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    20. Luiz de Mello, 2023. "Real Estate in a Post-Pandemic World: How Can Policies Make Housing More Enviromentally Sustainable and Affordable?," Hacienda Pública Española / Review of Public Economics, IEF, vol. 244(1), pages 111-139, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:191:y:2024:i:c:s0301421524001885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.