IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.00314.html
   My bibliography  Save this paper

Green Hydrogen Cost-Potentials for Global Trade

Author

Listed:
  • David Franzmann
  • Heidi Heinrichs
  • Felix Lippkau
  • Thushara Addanki
  • Christoph Winkler
  • Patrick Buchenberg
  • Thomas Hamacher
  • Markus Blesl
  • Jochen Lin{ss}en
  • Detlef Stolten

Abstract

Green hydrogen is expected to be traded globally in future greenhouse gas neutral energy systems. However, there is still a lack of temporally- and spatially-explicit cost-potentials for green hydrogen considering the full process chain, which are necessary for creating effective global strategies. Therefore, this study provides such detailed cost-potential-curves for 28 selected countries worldwide until 2050, using an optimizing energy systems approach based on open-field photovoltaics (PV) and onshore wind. The results reveal huge hydrogen potentials (>1,500 PWhLHV/a) and 79 PWhLHV/a at costs below 2.30 EUR/kg in 2050, dominated by solar-rich countries in Africa and the Middle East. Decentralized PV-based hydrogen production, even in wind-rich countries, is always preferred. Supplying sustainable water for hydrogen production is needed while having minor impact on hydrogen cost. Additional costs for imports from democratic regions are only total 7% higher. Hence, such regions could boost the geostrategic security of supply for greenhouse gas neutral energy systems.

Suggested Citation

  • David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
  • Handle: RePEc:arx:papers:2303.00314
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.00314
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    2. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    3. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    4. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    5. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    6. Shruthi Patil & Leander Kotzur & Detlef Stolten, 2022. "Advanced Spatial and Technological Aggregation Scheme for Energy System Models," Energies, MDPI, vol. 15(24), pages 1-26, December.
    7. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    8. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    9. Ryberg, David Severin & Tulemat, Zena & Stolten, Detlef & Robinius, Martin, 2020. "Uniformly constrained land eligibility for onshore European wind power," Renewable Energy, Elsevier, vol. 146(C), pages 921-931.
    10. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    11. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    12. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    13. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2017. "Temporally-explicit and spatially-resolved global onshore wind energy potentials," Energy, Elsevier, vol. 131(C), pages 207-217.
    14. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    15. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    16. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    17. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    18. Rowe, Rebecca L. & Street, Nathaniel R. & Taylor, Gail, 2009. "Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 271-290, January.
    19. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    20. Patrick Buchenberg & Thushara Addanki & David Franzmann & Christoph Winkler & Felix Lippkau & Thomas Hamacher & Philipp Kuhn & Heidi Heinrichs & Markus Blesl, 2023. "Global Potentials and Costs of Synfuels via Fischer–Tropsch Process," Energies, MDPI, vol. 16(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eugeniusz Mokrzycki & Lidia Gawlik, 2024. "The Development of a Green Hydrogen Economy: Review," Energies, MDPI, vol. 17(13), pages 1-29, June.
    2. Uchendu Eugene Chigbu & Chigozie Nweke-Eze, 2023. "Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review," Land, MDPI, vol. 12(9), pages 1-20, September.
    3. Yue Yin & Jing Wang & Lei Li, 2024. "An Assessment Methodology for International Hydrogen Competitiveness: Seven Case Studies Compared," Sustainability, MDPI, vol. 16(12), pages 1-31, June.
    4. Shitab Ishmam & Heidi Heinrichs & Christoph Winkler & Bagher Bayat & Amin Lahnaoui & Solomon Agbo & Edgar Ubaldo Pena Sanchez & David Franzmann & Nathan Ojieabu & Celine Koerner & Youpele Micheal & Ba, 2024. "Mapping Local Green Hydrogen Cost-Potentials by a Multidisciplinary Approach," Papers 2407.07573, arXiv.org.
    5. C. Winkler & H. Heinrichs & S. Ishmam & B. Bayat & A. Lahnaoui & S. Agbo & E. U. Pe~na Sanchez & D. Franzmann & N. Oijeabou & C. Koerner & Y. Michael & B. Oloruntoba & C. Montzka & H. Vereecken & H. H, 2024. "Participatory Mapping of Local Green Hydrogen Cost-Potentials in Sub-Saharan Africa," Papers 2408.10184, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    2. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    3. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    4. Patrick Buchenberg & Thushara Addanki & David Franzmann & Christoph Winkler & Felix Lippkau & Thomas Hamacher & Philipp Kuhn & Heidi Heinrichs & Markus Blesl, 2023. "Global Potentials and Costs of Synfuels via Fischer–Tropsch Process," Energies, MDPI, vol. 16(4), pages 1-18, February.
    5. Scharf, Hendrik & Möst, Dominik, 2024. "Gas power — How much is needed on the road to carbon neutrality?," Energy Policy, Elsevier, vol. 187(C).
    6. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    7. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    8. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    9. Felix Lippkau & David Franzmann & Thushara Addanki & Patrick Buchenberg & Heidi Heinrichs & Philipp Kuhn & Thomas Hamacher & Markus Blesl, 2023. "Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System," Energies, MDPI, vol. 16(7), pages 1-20, April.
    10. Webb, Jeremy & Longden, Thomas & Boulaire, Fanny & Gono, Marcel & Wilson, Clevo, 2023. "The application of green finance to the production of blue and green hydrogen: A comparative study," Renewable Energy, Elsevier, vol. 219(P1).
    11. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    12. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    13. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    14. Giarola, Sara & Molar-Cruz, Anahi & Vaillancourt, Kathleen & Bahn, Olivier & Sarmiento, Luis & Hawkes, Adam & Brown, Maxwell, 2021. "The role of energy storage in the uptake of renewable energy: A model comparison approach," Energy Policy, Elsevier, vol. 151(C).
    15. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    16. Eugene Yin Cheung Wong & Danny Chi Kuen Ho & Stuart So & Chi-Wing Tsang & Eve Man Hin Chan, 2021. "Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model—A Comparative Study," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    17. Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
    18. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).
    19. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.00314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.