IDEAS home Printed from https://ideas.repec.org/a/taf/ecsysr/v23y2011i3p303-318.html
   My bibliography  Save this article

Structural Decomposition Analysis Of Greenhouse Gas Emissions In Norway 1990--2002

Author

Listed:
  • Asuka Yamakawa
  • Glen P. Peters

Abstract

The goal of this study is twofold: first, to quantify the economic factors driving greenhouse gas emissions in Norway, and second, to assess if random variations in the data affect the results. We use structural decomposition analysis (SDA) with chained constant price input--output tables and environmental extensions. We construct three sets of constant-price data using a smoothing algorithm to remove random variations from the data, and find that the results of the SDA are relatively robust to these variations. The production of exports was responsible for around 70% of the growth in greenhouse gas emissions from 1990 to 2002, household consumption of domestically produced products for about 15%, government 10%, with the remainder due to gross capital formation. The dominance of exports in the emissions growth may make future greenhouse gas mitigation challenging in Norway, particularly considering that the exports are dominated by oil and gas production.

Suggested Citation

  • Asuka Yamakawa & Glen P. Peters, 2011. "Structural Decomposition Analysis Of Greenhouse Gas Emissions In Norway 1990--2002," Economic Systems Research, Taylor & Francis Journals, vol. 23(3), pages 303-318, December.
  • Handle: RePEc:taf:ecsysr:v:23:y:2011:i:3:p:303-318
    DOI: 10.1080/09535314.2010.549461
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09535314.2010.549461
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09535314.2010.549461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hongxia & Zhang, Junfeng & Fang, Hong, 2017. "Electricity footprint of China’s industrial sectors and its socioeconomic drivers," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 98-106.
    2. Philip Macgregor Norman & Edward McGeehan & Gavin Mak & Andrew Maurer & John Michael Murray, 2013. "Transport Satellite Accounts are essential to boost Productivity and to improve Public Understanding," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 151-160, June.
    3. Tian, Xin & Chang, Miao & Lin, Chen & Tanikawa, Hiroki, 2014. "China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns," Applied Energy, Elsevier, vol. 123(C), pages 19-28.
    4. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    5. Hong, Jae Pyo & Byun, Jeong Eun & Kim, Pang Ryong, 2016. "Structural changes and growth factors of the ICT industry in Korea: 1995–2009," Telecommunications Policy, Elsevier, vol. 40(5), pages 502-513.
    6. Michal Habrman, 2011. "Structural decomposition analysis of CO2 emissions in the Slovak economy," EAPG Working Paper Series 006, Department of Economic Policy, Faculty of National Economy, University of Economics in Bratislava.
    7. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    8. Tian, Xin & Chang, Miao & Tanikawa, Hiroki & Shi, Feng & Imura, Hidefumi, 2013. "Structural decomposition analysis of the carbonization process in Beijing: A regional explanation of rapid increasing carbon dioxide emission in China," Energy Policy, Elsevier, vol. 53(C), pages 279-286.
    9. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    10. Xuemei Jiang & Huijuan Wang & Yan Xia, 2020. "Economic structural change, renewable energy development, and carbon dioxide emissions in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1345-1362, October.
    11. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    12. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    13. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    14. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    15. Marques, Alexandra & Rodrigues, João & Lenzen, Manfred & Domingos, Tiago, 2012. "Income-based environmental responsibility," Ecological Economics, Elsevier, vol. 84(C), pages 57-65.
    16. Lin, Boqiang & Teng, Yuqiang, 2022. "Structural path and decomposition analysis of sectoral carbon emission changes in China," Energy, Elsevier, vol. 261(PB).
    17. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    18. Ryoko Morioka & Keisuke Nansai & Koji Tsuda, 2018. "Role of linkage structures in supply chain for managing greenhouse gas emissions," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-21, December.
    19. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Analyzing Carbon Emissions Embodied in Construction Services: A Dynamic Hybrid Input–Output Model with Structural Decomposition Analysis," Energies, MDPI, vol. 12(8), pages 1-23, April.
    20. Yu, Yadong & Ren, Hongtao & Kharrazi, Ali & Ma, Tieju & Zhu, Bing, 2015. "Exploring socioeconomic drivers of environmental pressure on the city level: The case study of Chongqing in China," Ecological Economics, Elsevier, vol. 118(C), pages 123-131.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ecsysr:v:23:y:2011:i:3:p:303-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CESR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.