IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v173y2023ics030142152200605x.html
   My bibliography  Save this article

Masters of the machinery: The politics of economic modelling within European Union energy policy

Author

Listed:
  • Royston, Sarah
  • Foulds, Chris
  • Pasqualino, Roberto
  • Jones, Aled

Abstract

Economic modelling plays a major role in the development, justification and evaluation of energy policies. However, there has been little investigation of how political dynamics systematically influence these models' development and outputs, or the implications for energy strategies, targets and interventions. Using in-depth interviews with 24 European modellers and policyworkers, we illuminate the politics of economic modelling within European Union (EU) energy policymaking, focusing on dynamics of contestation, differentiated influence and power relations within models' a) framing of questions and problems; b) framing of scenarios and solutions; c) structural assumptions and d) definition of quantitative data inputs. We then consider deeper questions of e) access and exclusion, showing how modelling is used to silence critical voices and reinforce incumbent interests. We argue that understanding this politics of modelling is crucial to the implementation of sustainable energy transitions. We conclude with recommendations for researchers and policyworkers seeking to promote the use of alternative/innovative models in energy policy (within and beyond the EU), centring on reflexivity; recognition; and relationship-building. Developing multi-sectoral ‘communities of practice’ around innovative modelling approaches is vital in challenging a vicious circle of evidence and policy that legitimises business-as-usual in a dangerously warming world.

Suggested Citation

  • Royston, Sarah & Foulds, Chris & Pasqualino, Roberto & Jones, Aled, 2023. "Masters of the machinery: The politics of economic modelling within European Union energy policy," Energy Policy, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:enepol:v:173:y:2023:i:c:s030142152200605x
    DOI: 10.1016/j.enpol.2022.113386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152200605X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McGookin, Connor & Ó Gallachóir, Brian & Byrne, Edmond, 2021. "Participatory methods in energy system modelling and planning – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Manjari Mahajan, 2008. "Designing epidemics: models, policy-making, and global foreknowledge in India's AIDS epidemic," Science and Public Policy, Oxford University Press, vol. 35(8), pages 585-596, October.
    3. Van Dooren, Wouter & Noordegraaf, Mirko, 2020. "Staging Science: Authoritativeness and Fragility of Models and Measurement in the COVID-19 Crisis," SocArXiv nfm5j, Center for Open Science.
    4. Dave Huitema & Andrew Jordan & Stefania Munaretto & Mikael Hildén, 2018. "Policy experimentation: core concepts, political dynamics, governance and impacts," Policy Sciences, Springer;Society of Policy Sciences, vol. 51(2), pages 143-159, June.
    5. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    6. Midttun, Atle & Baumgartner, Thomas, 1986. "Negotiating energy futures The politics of energy forecasting," Energy Policy, Elsevier, vol. 14(3), pages 219-241, June.
    7. Kevin Anderson & Jessica Jewell, 2019. "Debating the bedrock of climate-change mitigation scenarios," Nature, Nature, vol. 573(7774), pages 348-349, September.
    8. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    9. Jonas J. Schoenefeld, 2021. "The European Green Deal: What Prospects for Governing Climate Change With Policy Monitoring?," Politics and Governance, Cogitatio Press, vol. 9(3), pages 370-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Chunzi & Bang, Rasmus Noss, 2023. "Comparative Investment Analysis of Wind and Nuclear Energy: Assessing the Impact of Changes in the Electricity Mix and Required Government Support for Investment Parity," Discussion Papers 2023/8, Norwegian School of Economics, Department of Business and Management Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Chappin, Emile J.L. & Schleich, Joachim & Guetlein, Marie-Charlotte & Faure, Corinne & Bouwmans, Ivo, 2022. "Linking of a multi-country discrete choice experiment and an agent-based model to simulate the diffusion of smart thermostats," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    3. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    4. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    5. József Kádár & Martina Pilloni & Tareq Abu Hamed, 2023. "A Survey of Renewable Energy, Climate Change, and Policy Awareness in Israel: The Long Path for Citizen Participation in the National Renewable Energy Transition," Energies, MDPI, vol. 16(5), pages 1-16, February.
    6. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    7. Frans Sengers & Bruno Turnheim & Frans Berkhout, 2021. "Beyond experiments: Embedding outcomes in climate governance," Environment and Planning C, , vol. 39(6), pages 1148-1171, September.
    8. Paula Kivimaa & Karoline S. Rogge, 2020. "Interplay of Policy Experimentation and Institutional Change in Transformative Policy Mixes: The Case of Mobility as a Service in Finland," SPRU Working Paper Series 2020-17, SPRU - Science Policy Research Unit, University of Sussex Business School.
    9. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    10. Daniela Vîrjan & Claudia Rodica Popescu & Iuliana Pop & Delia Popescu, 2023. "Energy Transition and Sustainable Development at the Level of the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 429-429, April.
    11. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    12. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
    13. Paul Adrianus van Baal, 2020. "Effectiveness of a strategic energy reserve during the energy transition: The case of Switzerland," Competition and Regulation in Network Industries, , vol. 21(2), pages 65-90, June.
    14. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    16. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik, 2023. "Long term impacts of climate change on the transition towards renewables in Switzerland," Energy, Elsevier, vol. 263(PE).
    17. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    18. Claire Dupont & Diarmuid Torney, 2021. "European Union Climate Governance and the European Green Deal in Turbulent Times," Politics and Governance, Cogitatio Press, vol. 9(3), pages 312-315.
    19. Gazull, Laurent & Gautier, Denis & Montagne, Pierre, 2019. "Household energy transition in Sahelian cities: An analysis of the failure of 30 years of energy policies in Bamako, Mali," Energy Policy, Elsevier, vol. 129(C), pages 1080-1089.
    20. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:173:y:2023:i:c:s030142152200605x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.