IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56540-3.html
   My bibliography  Save this article

Carbon pricing drives critical transition to green growth

Author

Listed:
  • Isaak Mengesha

    (Informatics Institute University of Amsterdam)

  • Debraj Roy

    (Informatics Institute University of Amsterdam)

Abstract

Carbon pricing is a crucial tool in the efforts to address and mitigate climate change. In 2014, only 12% of carbon emissions fell under carbon pricing at USD7 per tonne; now, about 23% of greenhouse gas emissions are priced at USD32 per tonne. However, the regressive nature of carbon pricing can disproportionately affect lower-income populations and potentially reduce political support and public awareness. This raises questions about the dynamics of increasing carbon pricing rates and the optimal balance between inequality, emissions, and economic growth. We find that a critical level of carbon pricing can induce tipping points; incentivizing technological adoption and fuel switching behaviour of energy producers. By combining carbon pricing with redistributive measures at these tipping points, we demonstrate that emissions can be rapidly reduced while maintaining economic growth and decreasing inequality. We also introduce real-time metrics for detecting sector-specific tipping points, without requiring counterfactual analysis. Our research has important implications for the ongoing debate around the relationship between economic growth, inequality, and environmental sustainability.

Suggested Citation

  • Isaak Mengesha & Debraj Roy, 2025. "Carbon pricing drives critical transition to green growth," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56540-3
    DOI: 10.1038/s41467-025-56540-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56540-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56540-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Joseph E. Stiglitz & Tania Treibich, 2020. "Rational Heuristics? Expectations And Behaviors In Evolving Economies With Heterogeneous Interacting Agents," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1487-1516, July.
    2. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    3. Gilbert E. Metcalf & James H. Stock, 2023. "The Macroeconomic Impact of Europe's Carbon Taxes," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(3), pages 265-286, July.
    4. Joseph E. Aldy & Alan J. Krupnick & Richard G. Newell & Ian W. H. Parry & William A. Pizer, 2010. "Designing Climate Mitigation Policy," Journal of Economic Literature, American Economic Association, vol. 48(4), pages 903-934, December.
    5. Orsetta Causa & Nicolas Woloszko & David Leite, 2019. "Housing, wealth accumulation and wealth distribution: Evidence and stylized facts," OECD Economics Department Working Papers 1588, OECD Publishing.
    6. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    7. Dosi, Giovanni & Fagiolo, Giorgio & Roventini, Andrea, 2010. "Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1748-1767, September.
    8. Lengnick, Matthias, 2013. "Agent-based macroeconomics: A baseline model," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 102-120.
    9. Mainzer, Klaus, 2009. "Challenges of Complexity in the 21st Century. An Interdisciplinary Introduction," European Review, Cambridge University Press, vol. 17(2), pages 219-236, May.
    10. Özge Dilaver & Robert Calvert Jump & Paul Levine, 2018. "Agent‐Based Macroeconomics And Dynamic Stochastic General Equilibrium Models: Where Do We Go From Here?," Journal of Economic Surveys, Wiley Blackwell, vol. 32(4), pages 1134-1159, September.
    11. Konc, Théo & Savin, Ivan & van den Bergh, Jeroen C.J.M., 2021. "The social multiplier of environmental policy: Application to carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
    12. Christopher Carroll & Jiri Slacalek & Kiichi Tokuoka & Matthew N. White, 2017. "The distribution of wealth and the marginal propensity to consume," Quantitative Economics, Econometric Society, vol. 8(3), pages 977-1020, November.
    13. Frank Venmans & Jane Ellis & Daniel Nachtigall, 2020. "Carbon pricing and competitiveness: are they at odds?," Climate Policy, Taylor & Francis Journals, vol. 20(9), pages 1070-1091, October.
    14. René Kemp & Babette Never, 2017. "Green transition, industrial policy, and economic development," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(1), pages 66-84.
    15. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    16. Timothy M. Lenton & Johan Rockström & Owen Gaffney & Stefan Rahmstorf & Katherine Richardson & Will Steffen & Hans Joachim Schellnhuber, 2019. "Climate tipping points — too risky to bet against," Nature, Nature, vol. 575(7784), pages 592-595, November.
    17. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    18. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    19. Fragkos, Panagiotis & Fragkiadakis, Kostas & Sovacool, Benjamin & Paroussos, Leonidas & Vrontisi, Zoi & Charalampidis, Ioannis, 2021. "Equity implications of climate policy: Assessing the social and distributional impacts of emission reduction targets in the European Union," Energy, Elsevier, vol. 237(C).
    20. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    21. Tina Balke & Nigel Gilbert, 2014. "How Do Agents Make Decisions? A Survey," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(4), pages 1-13.
    22. Baoping Shang, 2023. "The Poverty and Distributional Impacts of Carbon Pricing: Channels and Policy Implications," Review of Environmental Economics and Policy, University of Chicago Press, vol. 17(1), pages 64-85.
    23. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    24. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    25. Blake LeBaron & Leigh Tesfatsion, 2008. "Modeling Macroeconomies as Open-Ended Dynamic Systems of Interacting Agents," American Economic Review, American Economic Association, vol. 98(2), pages 246-250, May.
    26. Boyce, James K., 2018. "Carbon Pricing: Effectiveness and Equity," Ecological Economics, Elsevier, vol. 150(C), pages 52-61.
    27. Foramitti, Joël & Savin, Ivan & van den Bergh, Jeroen C.J.M., 2021. "Emission tax vs. permit trading under bounded rationality and dynamic markets," Energy Policy, Elsevier, vol. 148(PB).
    28. Liu, Feng & van den Bergh, Jeroen C.J.M., 2020. "Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA," Energy Policy, Elsevier, vol. 138(C).
    29. Angela Köppl & Margit Schratzenstaller, 2023. "Carbon taxation: A review of the empirical literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(4), pages 1353-1388, September.
    30. David Klenert & Linus Mattauch & Emmanuel Combet & Ottmar Edenhofer & Cameron Hepburn & Ryan Rafaty & Nicholas Stern, 2018. "Making carbon pricing work for citizens," Nature Climate Change, Nature, vol. 8(8), pages 669-677, August.
    31. Fernández, Esther & Pérez, Rafaela & Ruiz, Jesús, 2011. "Optimal green tax reforms yielding double dividend," Energy Policy, Elsevier, vol. 39(7), pages 4253-4263, July.
    32. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.
    33. Geoffrey Blanford & James Merrick & Richard Richels & Steven Rose, 2014. "Trade-offs between mitigation costs and temperature change," Climatic Change, Springer, vol. 123(3), pages 527-541, April.
    34. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    35. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    36. Sara Maestre-Andrés & Stefan Drews & Ivan Savin & Jeroen Bergh, 2021. "Carbon tax acceptability with information provision and mixed revenue uses," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    37. Cees Diks & Cars Hommes & Juanxi Wang, 2019. "Critical slowing down as an early warning signal for financial crises?," Empirical Economics, Springer, vol. 57(4), pages 1201-1228, October.
    38. Gilbert E. Metcalf, 2021. "Carbon Taxes in Theory and Practice," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 245-265, October.
    39. Jeroen den Bergh & Ivan Savin, 2021. "Impact of Carbon Pricing on Low-Carbon Innovation and Deep Decarbonisation: Controversies and Path Forward," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 705-715, December.
    40. Dolphin, Geoffroy & Xiahou, Qinrui, 2022. "World Carbon Pricing Database: Sources and Methods," RFF Working Paper Series 22-05, Resources for the Future.
    41. Jeroen C. J. M. van den Bergh & Arild Angelsen & Andrea Baranzini & W. J. W. Botzen & Stefano Carattini & Stefan Drews & Tessa Dunlop & Eric Galbraith & Elisabeth Gsottbauer & Richard B. Howarth & Emi, 2020. "A dual-track transition to global carbon pricing," Climate Policy, Taylor & Francis Journals, vol. 20(9), pages 1057-1069, October.
    42. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Wei, Yi-Ming & Liang, Qiao-Mei, 2016. "Distributional effects of carbon taxation," Applied Energy, Elsevier, vol. 184(C), pages 1123-1131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bergh, Jeroen, 2023. "Climate policy versus growth concerns: Suggestions for economic research and communication," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
    2. Foramitti, Joël & Savin, Ivan & van den Bergh, Jeroen C.J.M., 2024. "How carbon pricing affects multiple human needs: An agent-based model analysis," Ecological Economics, Elsevier, vol. 217(C).
    3. Amendola, Marco & Lamperti, Francesco & Roventini, Andrea & Sapio, Alessandro, 2024. "Energy efficiency policies in an agent-based macroeconomic model," Structural Change and Economic Dynamics, Elsevier, vol. 68(C), pages 116-132.
    4. Váry, Miklós, 2021. "The long-run real effects of monetary shocks: Lessons from a hybrid post-Keynesian-DSGE-agent-based menu cost model," Economic Modelling, Elsevier, vol. 105(C).
    5. Giovanni Dosi & Andrea Roventini, 2024. "Evolutionary Growth Theory," LEM Papers Series 2024/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Lackner, Teresa & Fierro, Luca E. & Mellacher, Patrick, 2025. "Opinion dynamics meet agent-based climate economics: An integrated analysis of carbon taxation," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    7. Giovanni Dosi & Andrea Roventini & Emmanuele Russo, 2020. "Public Policies And The Art Of Catching Up," Working Papers hal-03242369, HAL.
    8. Sterner, Thomas & Ewald, Jens & Sterner, Erik, 2024. "Economists and the climate," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 109(C).
    9. Dosi, Giovanni & Roventini, Andrea & Russo, Emanuele, 2019. "Endogenous growth and global divergence in a multi-country agent-based model," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 101-129.
    10. Dosi, Giovanni & Lamperti, Francesco & Mazzucato, Mariana & Napoletano, Mauro & Roventini, Andrea, 2023. "Mission-oriented policies and the “Entrepreneurial State” at work: An agent-based exploration," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    11. Adalbert Mayer, 2022. "An Agent-Based Macroeconomic Model with Endogenous Intertemporal Decision Rules," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 48(4), pages 548-579, October.
    12. Taberna, Alessandro & Filatova, Tatiana & Roventini, Andrea & Lamperti, Francesco, 2022. "Coping with increasing tides: Evolving agglomeration dynamics and technological change under exacerbating hazards," Ecological Economics, Elsevier, vol. 202(C).
    13. repec:spo:wpmain:info:hdl:2441/3s3jn8tt5h9mab7fo128gecbhj is not listed on IDEAS
    14. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    15. Alessandro Taberna & Tatiana Filatova & Andrea Roventini & Francesco Lamperti, 2021. "Coping with increasing tides: technological change, agglomeration dynamics and climate hazards in an agent-based evolutionary model," LEM Papers Series 2021/44, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Wu, Huihuang & Zhou, Yuhan & Wang, Xian & Hu, Xiurong & Zhang, Shihui & Ren, Yang & Liu, Junfeng & Liu, Ying & Tao, Shu, 2024. "The climate, health, and economic outcomes across different carbon pricing policies to achieve China's climate goals," Applied Energy, Elsevier, vol. 368(C).
    17. Muth, Daniel, 2023. "Pathways to stringent carbon pricing: Configurations of political economy conditions and revenue recycling strategies. A comparison of thirty national level policies," Ecological Economics, Elsevier, vol. 214(C).
    18. Foramitti, Joël & Savin, Ivan & van den Bergh, Jeroen C.J.M., 2021. "Emission tax vs. permit trading under bounded rationality and dynamic markets," Energy Policy, Elsevier, vol. 148(PB).
    19. Giovanni Dosi & Andrea Roventini & Emanuele Russo, 2021. "Public policies and the art of catching up: matching the historical evidence with a multicountry agent-based model [Catching up, forging ahead, and falling behind]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(4), pages 1011-1036.
    20. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    21. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56540-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.