IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p1890-1898.html
   My bibliography  Save this article

Outline of principles for building scenarios – Transition toward more sustainable energy systems

Author

Listed:
  • Wang, Ziyi
  • Wennersten, Ronald
  • Sun, Qie

Abstract

There is more or less consensus around the problems related to the existing energy systems. Most focus has been on the negative environmental effects of using fossil fuels. Many papers and reports conclude that renewable energy has the potential to run the world and the technology needed to do so is available. An important question is: why such a big potential is only marginally utilized?

Suggested Citation

  • Wang, Ziyi & Wennersten, Ronald & Sun, Qie, 2017. "Outline of principles for building scenarios – Transition toward more sustainable energy systems," Applied Energy, Elsevier, vol. 185(P2), pages 1890-1898.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1890-1898
    DOI: 10.1016/j.apenergy.2015.12.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Shahmohammadi, M. Sadegh & Mohd. Yusuff, Rosnah & Keyhanian, Sina & Shakouri G., Hamed, 2015. "A decision support system for evaluating effects of Feed-in Tariff mechanism: Dynamic modeling of Malaysia’s electricity generation mix," Applied Energy, Elsevier, vol. 146(C), pages 217-229.
    3. Marini, Abbas & Latify, Mohammad Amin & Ghazizadeh, Mohammad Sadegh & Salemnia, Ahmad, 2015. "Long-term chronological load modeling in power system studies with energy storage systems," Applied Energy, Elsevier, vol. 156(C), pages 436-448.
    4. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    5. Schilstra, Anne Jelle, 2001. "How sustainable is the use of peat for commercial energy production?," Ecological Economics, Elsevier, vol. 39(2), pages 285-293, November.
    6. Snape, J.R. & Boait, P.J. & Rylatt, R.M., 2015. "Will domestic consumers take up the renewable heat incentive? An analysis of the barriers to heat pump adoption using agent-based modelling," Energy Policy, Elsevier, vol. 85(C), pages 32-38.
    7. Allen,Robert C., 2009. "The British Industrial Revolution in Global Perspective," Cambridge Books, Cambridge University Press, number 9780521868273, November.
    8. Brian Heath & Raymond Hill & Frank Ciarallo, 2009. "A Survey of Agent-Based Modeling Practices (January 1998 to July 2008)," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-9.
    9. Lee, Duk Hee & Park, Sang Yong & Hong, Jong Chul & Choi, Sang Jin & Kim, Jong Wook, 2013. "Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model," Applied Energy, Elsevier, vol. 103(C), pages 306-316.
    10. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    11. Ma, Tieju & Nakamori, Yoshiteru, 2005. "Agent-based modeling on technological innovation as an evolutionary process," European Journal of Operational Research, Elsevier, vol. 166(3), pages 741-755, November.
    12. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    13. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    2. Mauleón, Ignacio, 2019. "Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    4. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    5. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    6. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    7. Laha, Priyanka & Chakraborty, Basab & Østergaard, Poul Alberg, 2020. "Electricity system scenario development of India with import independence in 2030," Renewable Energy, Elsevier, vol. 151(C), pages 627-639.
    8. Kraan, Oscar & Chappin, Emile & Kramer, Gert Jan & Nikolic, Igor, 2019. "The influence of the energy transition on the significance of key energy metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 215-223.
    9. Zhang, M.M. & Zhang, C. & Liu, L.Y. & Zhou, D.Q., 2020. "Is it time to launch grid parity in the Chinese solar photovoltaic industry? Evidence from 335 cities," Energy Policy, Elsevier, vol. 147(C).
    10. Jiang, Wei & Yuan, Dongdong & Xu, Shudong & Hu, Huitao & Xiao, Jingjing & Sha, Aimin & Huang, Yue, 2017. "Energy harvesting from asphalt pavement using thermoelectric technology," Applied Energy, Elsevier, vol. 205(C), pages 941-950.
    11. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    12. Ding, Wangwang & Du, Juntao & Kazancoglu, Yigit & Mangla, Sachin Kumar & Song, Malin, 2023. "Financial development and the energy net-zero transformation potential," Energy Economics, Elsevier, vol. 125(C).
    13. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    14. Wang, Wei & Sun, Bo & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2020. "An improved min-max power dispatching method for integration of variable renewable energy," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    2. Moncada, J.A. & Verstegen, J.A. & Posada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2018. "Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach," Energy Policy, Elsevier, vol. 123(C), pages 619-641.
    3. Sanghamitra Mukherjee & Séin Healy & Tensay Meles & L. (Lisa B.) Ryan & Robert Mooney & Lindsay Sharpe & Paul Hayes, 2020. "Renewable Energy Technology Uptake: Public Preferences and Policy Design in Early Adoption," Working Papers 202004, School of Economics, University College Dublin.
    4. Li, Pei-Hao & Barazza, Elsa & Strachan, Neil, 2022. "The influences of non-optimal investments on the scale-up of smart local energy systems in the UK electricity market," Energy Policy, Elsevier, vol. 170(C).
    5. Alderete Peralta, Ali & Balta-Ozkan, Nazmiye & Longhurst, Philip, 2022. "Spatio-temporal modelling of solar photovoltaic adoption: An integrated neural networks and agent-based modelling approach," Applied Energy, Elsevier, vol. 305(C).
    6. Chappin, Emile J.L. & Schleich, Joachim & Guetlein, Marie-Charlotte & Faure, Corinne & Bouwmans, Ivo, 2022. "Linking of a multi-country discrete choice experiment and an agent-based model to simulate the diffusion of smart thermostats," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    7. Ferreira, Pedro Cavalcanti & Pessôa, Samuel & dos Santos, Marcelo Rodrigues, 2016. "Globalization And The Industrial Revolution," Macroeconomic Dynamics, Cambridge University Press, vol. 20(3), pages 643-666, April.
    8. Klas Rönnbäck, 2014. "Slave ownership and fossil fuel usage: a commentary," Climatic Change, Springer, vol. 122(1), pages 1-9, January.
    9. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    10. Rabindra Nepal & Han Phoumin & Abiral Khatri, 2021. "Green Technological Development and Deployment in the Association of Southeast Asian Economies (ASEAN)—At Crossroads or Roundabout?," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    11. Allen, Robert C., 2012. "Backward into the future: The shift to coal and implications for the next energy transition," Energy Policy, Elsevier, vol. 50(C), pages 17-23.
    12. Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
    13. Vincent Geloso & Peter Lindert, 2020. "Relative costs of living, for richer and poorer, 1688–1914," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 14(3), pages 417-442, September.
    14. Edwyna Harris & Sumner La Croix, 2019. "Prices, Wages, and Welfare in Early Colonial South Australia, 1836-1850," Monash Economics Working Papers 07-19, Monash University, Department of Economics.
    15. Zahedi Rad, Vahid & Seifi, Abbas & Fadai, Dawud, 2023. "Policy design for transition from imitation to innovation in emerging photovoltaic sectors using a system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    16. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    17. Ponta, Linda & Puliga, Gloria & Lazzarotti, Valentina & Manzini, Raffaella & Cincotti, Silvano, 2023. "To copatent or not to copatent: An agent-based model for firms facing this dilemma," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1349-1363.
    18. Xiaofeng Liu & Shijun Wang & Jiawen Sun, 2018. "Energy Management for Community Energy Network with CHP Based on Cooperative Game," Energies, MDPI, vol. 11(5), pages 1-18, April.
    19. Broadberry, Stephen & Ghosal, Sayantan & Proto, Eugenio, 2011. "Is Anonymity the Missing Link Between Commercial and Industrial Revolution?," The Warwick Economics Research Paper Series (TWERPS) 974, University of Warwick, Department of Economics.
    20. Jane Humphries & Jacob Weisdorf, 2019. "Unreal Wages? Real Income and Economic Growth in England, 1260–1850," The Economic Journal, Royal Economic Society, vol. 129(623), pages 2867-2887.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1890-1898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.