IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4885-d1177175.html
   My bibliography  Save this article

Economic Viability of Implementing Structural Health Monitoring Systems on the Support Structures of Bottom-Fixed Offshore Wind

Author

Listed:
  • Mario Vieira

    (WavEC Offshore Renewables, Edifício Diogo Cão, Doca de Alcântara Norte, 1350-352 Lisbon, Portugal
    IDMEC, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais nº1, 1049-001 Lisbon, Portugal)

  • Brian Snyder

    (Department of Environmental Sciences, Louisiana State University, 1002-Q Energy, Coast & Environment Building, Baton Rouge, LA 70803, USA)

  • Elsa Henriques

    (IDMEC, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais nº1, 1049-001 Lisbon, Portugal)

  • Craig White

    (WavEC Offshore Renewables, Edifício Diogo Cão, Doca de Alcântara Norte, 1350-352 Lisbon, Portugal)

  • Luis Reis

    (IDMEC, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais nº1, 1049-001 Lisbon, Portugal)

Abstract

Offshore wind (OSW) energy is a renewable source with strong prospects of development that may decisively contribute towards energy independence. Offshore wind is, however, not yet ubiquitously cost competitive, and frequently requires support schemes to finance its extensive capital requirements. Therefore, cost reduction strategies are necessary for the future development of offshore wind technologies. Even if structural health monitoring (SHM) systems are currently applied for the inspection of critical mechanical structures, they have not been the focus of research from offshore wind stakeholders. The main goal of this study is to evaluate the viability of SHM systems on the support structures of bottom-fixed offshore wind (BFOSW), alongside the impact of implementing these systems on life-cycle. Economic models are used to estimate the impact of implementing these systems, explained using a case-study of the Kaskasi farm in the German North Sea. General results indicate that installing SHM systems on the support structures of offshore wind can shift the maintenance strategies from preventive to predictive, allowing the intervals between inspections to be increased without a reduction on equipment availability. The greatest benefit is related with the possibility of extending the operational life of the farm.

Suggested Citation

  • Mario Vieira & Brian Snyder & Elsa Henriques & Craig White & Luis Reis, 2023. "Economic Viability of Implementing Structural Health Monitoring Systems on the Support Structures of Bottom-Fixed Offshore Wind," Energies, MDPI, vol. 16(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4885-:d:1177175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wymore, Mathew L. & Van Dam, Jeremy E. & Ceylan, Halil & Qiao, Daji, 2015. "A survey of health monitoring systems for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 976-990.
    2. Zhou, P. & Yin, P.T., 2019. "An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 1-9.
    3. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    4. Hines, Eric M. & Baxter, Christopher D.P. & Ciochetto, David & Song, Mingming & Sparrevik, Per & Meland, Henrik J. & Strout, James M. & Bradshaw, Aaron & Hu, Sau-Lon & Basurto, Jorge R. & Moaveni, Bab, 2023. "Structural instrumentation and monitoring of the Block Island Offshore Wind Farm," Renewable Energy, Elsevier, vol. 202(C), pages 1032-1045.
    5. Malte Jansen & Iain Staffell & Lena Kitzing & Sylvain Quoilin & Edwin Wiggelinkhuizen & Bernard Bulder & Iegor Riepin & Felix Müsgens, 2020. "Offshore wind competitiveness in mature markets without subsidy," Nature Energy, Nature, vol. 5(8), pages 614-622, August.
    6. Vieira, M. & Snyder, B. & Henriques, E. & Reis, L., 2019. "European offshore wind capital cost trends up to 2020," Energy Policy, Elsevier, vol. 129(C), pages 1364-1371.
    7. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    2. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    3. Sakaris, Christos S. & Yang, Yang & Bashir, Musa & Michailides, Constantine & Wang, Jin & Sakellariou, John S. & Li, Chun, 2021. "Structural health monitoring of tendons in a multibody floating offshore wind turbine under varying environmental and operating conditions," Renewable Energy, Elsevier, vol. 179(C), pages 1897-1914.
    4. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    6. Hastings-Simon, Sara & Leach, Andrew & Shaffer, Blake & Weis, Tim, 2022. "Alberta's Renewable Electricity Program: Design, results, and lessons learned," Energy Policy, Elsevier, vol. 171(C).
    7. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Hughes, Llewelyn & Longden, Thomas, 2024. "Offshore wind power in the Asia-Pacific: Expert elicitation on costs and policies," Energy Policy, Elsevier, vol. 184(C).
    9. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    12. Bakdi, Azzeddine & Kouadri, Abdelmalek & Mekhilef, Saad, 2019. "A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 546-555.
    13. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    14. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    15. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    16. Timothy Fraser & Daniel P. Aldrich, 2020. "The Fukushima effect at home: The changing role of domestic actors in Japanese energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(5), September.
    17. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    18. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    19. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    20. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4885-:d:1177175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.