IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v142y2020ics0301421520302408.html
   My bibliography  Save this article

Disruptive and uncertain: Policy makers’ perceptions on UK heat decarbonisation

Author

Listed:
  • Lowes, Richard
  • Woodman, Bridget

Abstract

The decarbonisation of heating represents a transformative challenge for many countries. The UK's net-zero greenhouse gas emissions target requires the removal of fossil fuel combustion from heating in just three decades. A greater understanding of policy processes linked to system transformations is expected to be of value for understanding systemic change; how policy makers perceive policy issues can impact on policy change with knock-on effects for energy system change. This article builds on the literature considering policy maker perceptions and focuses on the issue of UK heat policy. Using qualitative analysis, we show that policy makers perceive heat decarbonisation as disruptive, technological pathways are seen as deeply uncertain and heat decarbonisation appears to offer policy makers little ‘up-side’. Perceptions are bounded by uncertainty, affected by concerns over negative impacts, influenced by external influences and relate to ideas of continuity. Further research and evidence on optimal heat decarbonisation and an adaptive approach to governance could support policy makers to deliver policy commensurate with heat decarbonisation. However even with reduced uncertainty and more flexible governance, the perceptions of disruption to consumers mean that transformative heat policy may remain unpopular for policy makers, potentially putting greenhouse mitigation targets at risk of being missed.

Suggested Citation

  • Lowes, Richard & Woodman, Bridget, 2020. "Disruptive and uncertain: Policy makers’ perceptions on UK heat decarbonisation," Energy Policy, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:enepol:v:142:y:2020:i:c:s0301421520302408
    DOI: 10.1016/j.enpol.2020.111494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520302408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    2. Chaudry, Modassar & Abeysekera, Muditha & Hosseini, Seyed Hamid Reza & Jenkins, Nick & Wu, Jianzhong, 2015. "Uncertainties in decarbonising heat in the UK," Energy Policy, Elsevier, vol. 87(C), pages 623-640.
    3. Elizabeth Shove & Gordon Walker, 2007. "Caution! Transitions Ahead: Politics, Practice, and Sustainable Transition Management," Environment and Planning A, , vol. 39(4), pages 763-770, April.
    4. Connor, Peter M. & Xie, Lei & Lowes, Richard & Britton, Jessica & Richardson, Thomas, 2015. "The development of renewable heating policy in the United Kingdom," Renewable Energy, Elsevier, vol. 75(C), pages 733-744.
    5. Paul Cairney & Richard Kwiatkowski, 2017. "How to communicate effectively with policymakers: combine insights from psychology and policy studies," Palgrave Communications, Palgrave Macmillan, vol. 3(1), pages 1-8, December.
    6. Shove, Elizabeth & Walker, Gordon, 2010. "Governing transitions in the sustainability of everyday life," Research Policy, Elsevier, vol. 39(4), pages 471-476, May.
    7. Katy Roelich & Jannik Giesekam, 2019. "Decision making under uncertainty in climate change mitigation: introducing multiple actor motivations, agency and influence," Climate Policy, Taylor & Francis Journals, vol. 19(2), pages 175-188, February.
    8. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    9. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    10. Elizabeth Maitland & André Sammartino, 2015. "Decision making and uncertainty: The role of heuristics and experience in assessing a politically hazardous environment," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1554-1578, October.
    11. Shabnam Mousavi, 2018. "What do heuristics have to do with policymaking?," Journal of Behavioral Economics for Policy, Society for the Advancement of Behavioral Economics (SABE), vol. 2(1), pages 69-74, March.
    12. Lowes, Richard & Woodman, Bridget & Fitch-Roy, Oscar, 2019. "Policy change, power and the development of Great Britain's Renewable Heat Incentive," Energy Policy, Elsevier, vol. 131(C), pages 410-421.
    13. Florian Kern & Adrian Smith & Chris Shaw & Rob Raven & Bram Verhees, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," SPRU Working Paper Series 2014-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    14. Carolyn Hendriks, 2009. "Policy design without democracy? Making democratic sense of transition management," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 341-368, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Knittel, Tamara & Palmer-Wilson, Kevin & McPherson, Madeleine & Wild, Peter & Rowe, Andrew, 2024. "Heating electrification in cold climates: Invest in grid flexibility," Applied Energy, Elsevier, vol. 356(C).
    3. Salite, Daniela & Miao, Ying & Turner, Ed & Feng, Yuan, 2024. "Assessing the adoption of sustainable heating technologies in the United Kingdom – A case study of socioeconomically deprived neighbourhoods of Nottingham city," Technology in Society, Elsevier, vol. 77(C).
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    5. Yuventus Effendi & Budy P. Resosudarmo, 2022. "Socio-economic and environmental impact of intended decarbonisation policies in the East Asian region," Departmental Working Papers 2022-03, The Australian National University, Arndt-Corden Department of Economics.
    6. López-Bernabé, Elena & Linares, Pedro & Galarraga, Ibon, 2022. "Energy-efficiency policies for decarbonising residential heating in Spain: A fuzzy cognitive mapping approach," Energy Policy, Elsevier, vol. 171(C).
    7. Gaur, Ankita Singh & Fitiwi, Desta Z. & Lynch, Muireann & Longoria, Genaro, 2022. "Implications of heating sector electrification on the Irish power system in view of the Climate Action Plan," Energy Policy, Elsevier, vol. 168(C).
    8. Aunedi, Marko & Yliruka, Maria & Dehghan, Shahab & Pantaleo, Antonio Marco & Shah, Nilay & Strbac, Goran, 2022. "Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen," Renewable Energy, Elsevier, vol. 194(C), pages 1261-1276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lowes, Richard & Woodman, Bridget & Fitch-Roy, Oscar, 2019. "Policy change, power and the development of Great Britain's Renewable Heat Incentive," Energy Policy, Elsevier, vol. 131(C), pages 410-421.
    2. Jasminka Young & Aleksandar Macura, 2023. "Forging Local Energy Transition in the Most Carbon-Intensive European Region of the Western Balkans," Energies, MDPI, vol. 16(4), pages 1-29, February.
    3. Phil Johnstone & Andy Stirling, 2015. "Comparing Nuclear Power Trajectories inGermany And the UK: From ‘Regimes’ to ‘Democracies’ in Sociotechnical Transitions and Discontinuities," SPRU Working Paper Series 2015-18, SPRU - Science Policy Research Unit, University of Sussex Business School.
    4. Matthew Lockwood & Caroline Kuzemko & Catherine Mitchell & Richard Hoggett, 2017. "Historical institutionalism and the politics of sustainable energy transitions: A research agenda," Environment and Planning C, , vol. 35(2), pages 312-333, March.
    5. Zolfagharian, Mohammadreza & Walrave, Bob & Raven, Rob & Romme, A. Georges L., 2019. "Studying transitions: Past, present, and future," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    6. Contesse, Maria & Duncan, Jessica & Legun, Katharine & Klerkx, Laurens, 2021. "Unravelling non-human agency in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    7. Sebastian Fastenrath & Boris Braun, 2018. "Lost in Transition? Directions for an Economic Geography of Urban Sustainability Transitions," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    8. Manning, Stephan & Reinecke, Juliane, 2016. "A modular governance architecture in-the-making: How transnational standard-setters govern sustainability transitions," Research Policy, Elsevier, vol. 45(3), pages 618-633.
    9. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    10. Mary Lawhon, 2012. "Contesting power, trust and legitimacy in the South African e-waste transition," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(1), pages 69-86, March.
    11. Monk, Alexander & Perkins, Richard, 2020. "What explains the emergence and diffusion of green bonds?," Energy Policy, Elsevier, vol. 145(C).
    12. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    13. Whitmarsh, Lorraine, 2012. "How useful is the Multi-Level Perspective for transport and sustainability research?," Journal of Transport Geography, Elsevier, vol. 24(C), pages 483-487.
    14. Maria Tsouri & Jens Hanson & Håkon Endresen Normann, 2020. "Does participation in knowledge networks facilitate international market access? The case of offshore wind," Working Papers on Innovation Studies 20200303, Centre for Technology, Innovation and Culture, University of Oslo.
    15. Tsouri, Maria & Hanson, Jens & Normann, Håkon Endresen, 2021. "Does participation in knowledge networks facilitate market access in global innovation systems? The case of offshore wind," Research Policy, Elsevier, vol. 50(5).
    16. Garud, Raghu & Gehman, Joel, 2012. "Metatheoretical perspectives on sustainability journeys: Evolutionary, relational and durational," Research Policy, Elsevier, vol. 41(6), pages 980-995.
    17. Okereke, Chukwumerije & Coke, Alexia & Geebreyesus, Mulu & Ginbo, Tsegaye & Wakeford, Jeremy J. & Mulugetta, Yacob, 2019. "Governing green industrialisation in Africa: Assessing key parameters for a sustainable socio-technical transition in the context of Ethiopia," World Development, Elsevier, vol. 115(C), pages 279-290.
    18. Maria Luisa Lode & Geert te Boveldt & Cathy Macharis & Thierry Coosemans, 2021. "Application of Multi-Actor Multi-Criteria Analysis for Transition Management in Energy Communities," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    19. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    20. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:142:y:2020:i:c:s0301421520302408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.