IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v135y2019ics0301421519305907.html
   My bibliography  Save this article

Modeling the willingness to pay for energy efficient residence in urban residential sector in China

Author

Listed:
  • Jia, Jun–Jun
  • Wu, Hua-Qing
  • Nie, Hong-Guang
  • Fan, Ying

Abstract

Whether and how to share the incremental cost of energy efficient residence compared with common buildings between housing developers and buyers is an urgent problem to be solved in promoting energy efficient residence. This study estimates urban residents' willingness to pay (WTP) for energy efficient residence in Beijing and Changchun in China to provide important reference for this issue. The revised norm-motivated consumer choice model is used to identify the key factors in the two decision-making stages of determining WTP. Based on survey data and using probit and interval regression models, it shows that energy-saving revenue and incremental cost are the key factors affecting whether or not to buy energy efficient residence, and the preference for positive personal image only has a significant positive effect in Beijing. The mean and median WTP of Beijing residents are about 340 Yuan and 405 Yuan per square meter, respectively, whereas those of Changchun residents are about 350 Yuan per square meter. Policies targeting the energy saving and incremental cost of energy efficient residence and tailored to local residents' preferences can stimulate the promotion of energy efficient residence effectively.

Suggested Citation

  • Jia, Jun–Jun & Wu, Hua-Qing & Nie, Hong-Guang & Fan, Ying, 2019. "Modeling the willingness to pay for energy efficient residence in urban residential sector in China," Energy Policy, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:enepol:v:135:y:2019:i:c:s0301421519305907
    DOI: 10.1016/j.enpol.2019.111003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Lim, Sesil & Huh, Sung-Yoon & Shin, Jungwoo & Lee, Jongsu & Lee, Yong-Gil, 2019. "Enhancing public acceptance of renewable heat obligation policies in South Korea: Consumer preferences and policy implications," Energy Economics, Elsevier, vol. 81(C), pages 1167-1177.
    3. Piet Eichholtz & Nils Kok & John M. Quigley, 2013. "The Economics of Green Building," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 50-63, March.
    4. Nyborg, Karine & Howarth, Richard B. & Brekke, Kjell Arne, 2006. "Green consumers and public policy: On socially contingent moral motivation," Resource and Energy Economics, Elsevier, vol. 28(4), pages 351-366, November.
    5. Qiu, Yueming & Colson, Gregory & Grebitus, Carola, 2014. "Risk preferences and purchase of energy-efficient technologies in the residential sector," Ecological Economics, Elsevier, vol. 107(C), pages 216-229.
    6. Hunt Allcott & Dmitry Taubinsky, 2015. "Evaluating Behaviorally Motivated Policy: Experimental Evidence from the Lightbulb Market," American Economic Review, American Economic Association, vol. 105(8), pages 2501-2538, August.
    7. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    8. Ek, Kristina & Söderholm, Patrik, 2008. "Norms and economic motivation in the Swedish green electricity market," Ecological Economics, Elsevier, vol. 68(1-2), pages 169-182, December.
    9. Qianwen Li & Ruyin Long & Hong Chen & Feiyu Chen & Xiu Cheng, 2019. "Chinese urban resident willingness to pay for green housing based on double-entry mental accounting theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 129-153, January.
    10. Hyland, Marie & Lyons, Ronan C. & Lyons, Seán, 2013. "The value of domestic building energy efficiency — evidence from Ireland," Energy Economics, Elsevier, vol. 40(C), pages 943-952.
    11. Brekke, Kjell Arne & Kverndokk, Snorre & Nyborg, Karine, 2003. "An economic model of moral motivation," Journal of Public Economics, Elsevier, vol. 87(9-10), pages 1967-1983, September.
    12. Zhang, Li & Sun, Cong & Liu, Hongyu & Zheng, Siqi, 2016. "The role of public information in increasing homebuyers' willingness-to-pay for green housing: Evidence from Beijing," Ecological Economics, Elsevier, vol. 129(C), pages 40-49.
    13. Hong Hu & Stan Geertman & Pieter Hooimeijer, 2014. "The willingness to pay for green apartments: The case of Nanjing, China," Urban Studies, Urban Studies Journal Limited, vol. 51(16), pages 3459-3478, December.
    14. Michelsen, Carl Christian & Madlener, Reinhard, 2013. "Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany," Energy Policy, Elsevier, vol. 57(C), pages 221-233.
    15. Seung-Hoon Yoo & Seung-Jun Kwak & Tai-Yoo Kim, 2001. "Modelling willingness to pay responses from dichotomous choice contingent valuation surveys with zero observations," Applied Economics, Taylor & Francis Journals, vol. 33(4), pages 523-529.
    16. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    17. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    18. Werner, Megan, 1999. "Allowing for Zeros in Dichotomous-Choice Contingent-Valuation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 479-486, October.
    19. Banfi, Silvia & Farsi, Mehdi & Filippini, Massimo & Jakob, Martin, 2008. "Willingness to pay for energy-saving measures in residential buildings," Energy Economics, Elsevier, vol. 30(2), pages 503-516, March.
    20. Ye, Ling & Cheng, Zhijun & Wang, Qingqin & Lin, Wenshi & Ren, Feifei, 2013. "Overview on Green Building Label in China," Renewable Energy, Elsevier, vol. 53(C), pages 220-229.
    21. Li, Qianwen & Long, Ruyin & Chen, Hong, 2018. "Differences and influencing factors for Chinese urban resident willingness to pay for green housings: Evidence from five first-tier cities in China," Applied Energy, Elsevier, vol. 229(C), pages 299-313.
    22. Braun, Frauke G., 2010. "Determinants of households' space heating type: A discrete choice analysis for German households," Energy Policy, Elsevier, vol. 38(10), pages 5493-5503, October.
    23. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    24. Richard C. Ready & Dayuan Hu, 1995. "Statistical Approaches to the Fat Tail Problem for Dichotomous Choice Contingent Valuation," Land Economics, University of Wisconsin Press, vol. 71(4), pages 491-499.
    25. Mills, Bradford & Schleich, Joachim, 2010. "What's driving energy efficient appliance label awareness and purchase propensity?," Energy Policy, Elsevier, vol. 38(2), pages 814-825, February.
    26. Kwak, So-Yoon & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2010. "Valuing energy-saving measures in residential buildings: A choice experiment study," Energy Policy, Elsevier, vol. 38(1), pages 673-677, January.
    27. Galarraga, Ibon & González-Eguino, Mikel & Markandya, Anil, 2011. "Willingness to pay and price elasticities of demand for energy-efficient appliances: Combining the hedonic approach and demand systems," Energy Economics, Elsevier, vol. 33(S1), pages 66-74.
    28. Thomas C. Brown & Patricia A. Champ & Richard C. Bishop & Daniel W. McCollum, 1996. "Which Response Format Reveals the Truth about Donations to a Public Good?," Land Economics, University of Wisconsin Press, vol. 72(2), pages 152-166.
    29. Carmen Fernandez & Carmelo J. Leon & Mark F.J. Steel & Francisco Jose Vazquez-Polo, 2004. "Bayesian Analysis of Interval Data Contingent Valuation Models and Pricing Policies," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 431-442, October.
    30. Mozumder, Pallab & Vásquez, William F. & Marathe, Achla, 2011. "Consumers' preference for renewable energy in the southwest USA," Energy Economics, Elsevier, vol. 33(6), pages 1119-1126.
    31. Du, Ping & Zheng, Li-Qun & Xie, Bai-Chen & Mahalingam, Arjun, 2014. "Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-jin-tang, China," Energy Policy, Elsevier, vol. 75(C), pages 206-216.
    32. Anna Alberini, Silvia Banfi, and Celine Ramseier, 2013. "Energy Efficiency Investments in the Home: Swiss Homeowners and Expectations about Future Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    33. Cai, W.G. & Wu, Y. & Zhong, Y. & Ren, H., 2009. "China building energy consumption: Situation, challenges and corresponding measures," Energy Policy, Elsevier, vol. 37(6), pages 2054-2059, June.
    34. Deng, Yongheng & Wu, Jing, 2014. "Economic returns to residential green building investment: The developers' perspective," Regional Science and Urban Economics, Elsevier, vol. 47(C), pages 35-44.
    35. Chan, Edwin H.W. & Qian, Queena K. & Lam, Patrick T.I., 2009. "The market for green building in developed Asian cities--the perspectives of building designers," Energy Policy, Elsevier, vol. 37(8), pages 3061-3070, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jia-Wei & Javaid, Aneeque & Creutzig, Felix, 2021. "Leverage points for accelerating adoption of shared electric cars: Perceived benefits and environmental impact of NEVs," Energy Policy, Elsevier, vol. 155(C).
    2. Wu Xie & Chen Chen & Fangyi Li & Bofeng Cai & Ranran Yang & Libin Cao & Pengcheng Wu & Lingyun Pang, 2021. "Key Factors of Rural Households’ Willingness to Pay for Cleaner Heating in Hebi: A Case Study in Northern China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    3. Shiwen Zhao & Liwen Chen, 2021. "Exploring Residents’ Purchase Intention of Green Housings in China: An Extended Perspective of Perceived Value," IJERPH, MDPI, vol. 18(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    2. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    3. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    4. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    5. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying, 2018. "Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications," Energy Policy, Elsevier, vol. 113(C), pages 487-499.
    6. Blasch, Julia & Filippini, Massimo & Kumar, Nilkanth, 2019. "Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances," Resource and Energy Economics, Elsevier, vol. 56(C), pages 39-58.
    7. Claudy, Marius & Michelsen, Claus, 2016. "Housing Market Fundamentals, Housing Quality and Energy Consumption: Evidence from Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37(4), pages 25-43.
    8. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    9. Collins, Matthew & Curtis, John, 2017. "Identification of the information gap in residential energy efficiency: How information asymmetry can be mitigated to induce energy efficiency renovations," Papers WP558, Economic and Social Research Institute (ESRI).
    10. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
    11. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2019. "The effect of house energy efficiency programs on the extensive and intensive margin of lower-income households’ investment behavior," Energy Policy, Elsevier, vol. 128(C), pages 607-615.
    12. Lang, Ghislaine & Farsi, Mehdi & Lanz, Bruno & Weber, Sylvain, 2021. "Energy efficiency and heating technology investments: Manipulating financial information in a discrete choice experiment," Resource and Energy Economics, Elsevier, vol. 64(C).
    13. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    14. Konstantin A Kholodilin & Andreas Mense & Claus Michelsen, 2017. "The market value of energy efficiency in buildings and the mode of tenure," Urban Studies, Urban Studies Journal Limited, vol. 54(14), pages 3218-3238, November.
    15. Dalia Streimikiene & Tomas Balezentis & Irena Alebaite, 2020. "Climate Change Mitigation in Households between Market Failures and Psychological Barriers," Energies, MDPI, vol. 13(11), pages 1-21, June.
    16. Achtnicht, Martin & Madlener, Reinhard, 2014. "Factors influencing German house owners' preferences on energy retrofits," Energy Policy, Elsevier, vol. 68(C), pages 254-263.
    17. Chandra Kiran B. Krishnamurthy & Bengt Kriström, 2016. "Determinants of the Price-Premium for Green Energy: Evidence from an OECD Cross-Section," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 173-204, June.
    18. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    19. Walls, Margaret & Gerarden, Todd & Palmer, Karen & Bak, Xian Fang, 2017. "Is energy efficiency capitalized into home prices? Evidence from three U.S. cities," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 104-124.
    20. Ossokina, Ioulia V. & Kerperien, Stephan & Arentze, Theo A., 2021. "Does information encourage or discourage tenants to accept energy retrofitting of homes?," Energy Economics, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:135:y:2019:i:c:s0301421519305907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.